These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates. Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121 [TBL] [Abstract][Full Text] [Related]
23. Brain-computer interface-based action observation combined with peripheral electrical stimulation enhances corticospinal excitability in healthy subjects and stroke patients. Kim MG; Lim H; Lee HS; Han IJ; Ku J; Kang YJ J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35675795 [No Abstract] [Full Text] [Related]
24. The effect of brain-computer interface controlled functional electrical stimulation training on rehabilitation of upper limb after stroke: a systematic review and meta-analysis. Ren C; Li X; Gao Q; Pan M; Wang J; Yang F; Duan Z; Guo P; Zhang Y Front Hum Neurosci; 2024; 18():1438095. PubMed ID: 39391265 [TBL] [Abstract][Full Text] [Related]
25. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial. Lee SH; Kim SS; Lee BH Physiother Theory Pract; 2022 Sep; 38(9):1126-1134. PubMed ID: 33026895 [TBL] [Abstract][Full Text] [Related]
26. Attentional state-synchronous peripheral electrical stimulation during action observation induced distinct modulation of corticospinal plasticity after stroke. Jeong CH; Lim H; Lee J; Lee HS; Ku J; Kang YJ Front Neurosci; 2024; 18():1373589. PubMed ID: 38606309 [TBL] [Abstract][Full Text] [Related]
27. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation. Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359 [TBL] [Abstract][Full Text] [Related]
28. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. Matsumoto J; Fujiwara T; Takahashi O; Liu M; Kimura A; Ushiba J J Neuroeng Rehabil; 2010 Jun; 7():27. PubMed ID: 20540721 [TBL] [Abstract][Full Text] [Related]
29. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial. Kim T; Kim S; Lee B Occup Ther Int; 2016 Mar; 23(1):39-47. PubMed ID: 26301519 [TBL] [Abstract][Full Text] [Related]
30. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Kido Thompson A; Stein RB Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732 [TBL] [Abstract][Full Text] [Related]
31. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. Vučković A; Wallace L; Allan DB J Neurol Phys Ther; 2015 Jan; 39(1):3-14. PubMed ID: 25415550 [TBL] [Abstract][Full Text] [Related]
33. A BCI-Based Vibrotactile Neurofeedback Training Improves Motor Cortical Excitability During Motor Imagery. Grigorev NA; Savosenkov AO; Lukoyanov MV; Udoratina A; Shusharina NN; Kaplan AY; Hramov AE; Kazantsev VB; Gordleeva S IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1583-1592. PubMed ID: 34343094 [TBL] [Abstract][Full Text] [Related]
34. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
35. Short term priming effect of brain-actuated muscle stimulation using bimanual movements in stroke. Kumari R; Janković MM; Costa A; Savić AM; Konstantinović L; Djordjević O; Vucković A Clin Neurophysiol; 2022 Jun; 138():108-121. PubMed ID: 35378341 [TBL] [Abstract][Full Text] [Related]
36. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Jochumsen M; Cremoux S; Robinault L; Lauber J; Arceo JC; Navid MS; Nedergaard RW; Rashid U; Haavik H; Niazi IK Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400325 [TBL] [Abstract][Full Text] [Related]
37. Effect of real-time cortical feedback in motor imagery-based mental practice training. Bai O; Huang D; Fei DY; Kunz R NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829 [TBL] [Abstract][Full Text] [Related]
38. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Milosevic M; Marquez-Chin C; Masani K; Hirata M; Nomura T; Popovic MR; Nakazawa K Biomed Eng Online; 2020 Nov; 19(1):81. PubMed ID: 33148270 [TBL] [Abstract][Full Text] [Related]
39. Brain-computer interface controlled functional electrical stimulation system for ankle movement. Do AH; Wang PT; King CE; Abiri A; Nenadic Z J Neuroeng Rehabil; 2011 Aug; 8():49. PubMed ID: 21867567 [TBL] [Abstract][Full Text] [Related]
40. EEG-controlled functional electrical stimulation rehabilitation for chronic stroke: system design and clinical application. Chen L; Gu B; Wang Z; Zhang L; Xu M; Liu S; He F; Ming D Front Med; 2021 Oct; 15(5):740-749. PubMed ID: 34159536 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]