These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37714167)
1. Feather-inspired flow control device across flight regimes. Othman AK; Nair NJ; Goza A; Wissa A Bioinspir Biomim; 2023 Oct; 18(6):. PubMed ID: 37714167 [TBL] [Abstract][Full Text] [Related]
2. Covert-inspired flaps for lift enhancement and stall mitigation. Duan C; Wissa A Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33784648 [TBL] [Abstract][Full Text] [Related]
3. Covert-inspired flaps: an experimental study to understand the interactions between upperwing and underwing covert feathers. Zekry DA; Nam T; Gupta R; Zhu Y; Wissa AA Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37366564 [TBL] [Abstract][Full Text] [Related]
4. Experimental study of a passive control of airfoil lift using bioinspired feather flap. Wang L; Alam MM; Zhou Y Bioinspir Biomim; 2019 Sep; 14(6):066005. PubMed ID: 31434057 [TBL] [Abstract][Full Text] [Related]
5. Load alleviation of feather-inspired compliant airfoils for instantaneous flow control. Gamble LL; Harvey C; Inman DJ Bioinspir Biomim; 2020 Oct; 15(5):. PubMed ID: 32521517 [TBL] [Abstract][Full Text] [Related]
6. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil. Johnston J; Gopalarathnam A Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691 [TBL] [Abstract][Full Text] [Related]
7. Energy considerations and flow fields over whiffling-inspired wings. Sigrest P; Wu N; Inman DJ Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37141892 [TBL] [Abstract][Full Text] [Related]
8. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap. Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384 [TBL] [Abstract][Full Text] [Related]
9. The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device. Ito MR; Duan C; Wissa AA Bioinspir Biomim; 2019 Aug; 14(5):056015. PubMed ID: 31357180 [TBL] [Abstract][Full Text] [Related]
11. Avian whiffling-inspired gaps provide an alternative method for roll control. Sigrest P; Inman DJ Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609597 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight. Lynch M; Mandadzhiev B; Wissa A Bioinspir Biomim; 2018 Mar; 13(3):036003. PubMed ID: 29388556 [TBL] [Abstract][Full Text] [Related]
13. Feather roughness reduces flow separation during low Reynolds number glides of swifts. van Bokhorst E; de Kat R; Elsinga GE; Lentink D J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563 [TBL] [Abstract][Full Text] [Related]
18. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds. Hedrick TL; Usherwood JR; Biewener AA J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202 [TBL] [Abstract][Full Text] [Related]
19. Aeroelastic characterisation of a bio-inspired flapping membrane wing. Gehrke A; Richeux J; Uksul E; Mulleners K Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35917821 [TBL] [Abstract][Full Text] [Related]
20. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance. Rader JA; Hedrick TL; He Y; Waldrop LD Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]