These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37714167)

  • 21. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible Flaps Inspired by Avian Feathers Can Enhance Aerodynamic Robustness in low Reynolds Number Airfoils.
    Murayama Y; Nakata T; Liu H
    Front Bioeng Biotechnol; 2021; 9():612182. PubMed ID: 34026737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing.
    Linehan T; Mohseni K
    Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.
    Eder H; Fiedler W; Pascoe X
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):109-17. PubMed ID: 20938776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical assessment of wake-based estimation of instantaneous lift in flapping flight of large birds.
    Colognesi V; Ronsse R; Chatelain P
    PLoS One; 2023; 18(5):e0284714. PubMed ID: 37141190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.
    Usherwood JR
    J Theor Biol; 2016 Nov; 408():42-52. PubMed ID: 27418386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The function of the alula in avian flight.
    Lee SI; Kim J; Park H; Jabłoński PG; Choi H
    Sci Rep; 2015 May; 5():9914. PubMed ID: 25951056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computational investigation of lift generation and power expenditure of Pratt's roundleaf bat (Hipposideros pratti) in forward flight.
    Windes P; Fan X; Bender M; Tafti DK; Müller R
    PLoS One; 2018; 13(11):e0207613. PubMed ID: 30485321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Reynolds Number and Distribution on Passive Flow Control in Owl-Inspired Leading-Edge Serrations.
    Rao C; Liu H
    Integr Comp Biol; 2020 Nov; 60(5):1135-1146. PubMed ID: 32805051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.
    Hieronymus TL
    J Anat; 2016 Nov; 229(5):631-656. PubMed ID: 27320170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Birds repurpose the role of drag and lift to take off and land.
    Chin DD; Lentink D
    Nat Commun; 2019 Nov; 10(1):5354. PubMed ID: 31767856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How ornithopters can perch autonomously on a branch.
    Zufferey R; Tormo-Barbero J; Feliu-Talegón D; Nekoo SR; Acosta JÁ; Ollero A
    Nat Commun; 2022 Dec; 13(1):7713. PubMed ID: 36513661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.