These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37714167)
41. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective. Nabawy MRA; Crowther WJ J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395 [TBL] [Abstract][Full Text] [Related]
42. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422 [TBL] [Abstract][Full Text] [Related]
43. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000. Levy DE; Seifert A J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771 [TBL] [Abstract][Full Text] [Related]
44. Aerodynamic efficiency of gliding birds vs comparable UAVs: a review. Harvey C; Inman DJ Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33157545 [TBL] [Abstract][Full Text] [Related]
45. Towards silent and efficient flight by combining bioinspired owl feather serrations with cicada wing geometry. Wei Z; Wang S; Farris S; Chennuri N; Wang N; Shinsato S; Demir K; Horii M; Gu GX Nat Commun; 2024 May; 15(1):4337. PubMed ID: 38773081 [TBL] [Abstract][Full Text] [Related]
46. Functional Morphology of Gliding Flight I: Modeling Reveals Distinct Performance Landscapes Based on Soaring Strategies. Waldrop LD; He Y; Hedrick TL; Rader JA Integr Comp Biol; 2020 Nov; 60(5):1283-1296. PubMed ID: 32766844 [TBL] [Abstract][Full Text] [Related]
47. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development. Heers AM; Baier DB; Jackson BE; Dial KP PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994 [TBL] [Abstract][Full Text] [Related]
48. Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles. Jadhav SS; Lua KB; Tay WB Bioinspir Biomim; 2019 Feb; 14(3):036006. PubMed ID: 30721890 [TBL] [Abstract][Full Text] [Related]
49. Experiments and numerical simulations on hovering three-dimensional flexible flapping wings. Diaz-Arriba D; Jardin T; Gourdain N; Pons F; David L Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055251 [TBL] [Abstract][Full Text] [Related]
51. Numerical Simulation of a Passive Control of the Flow Around an Aerofoil Using a Flexible, Self Adaptive Flaplet. Rosti ME; Omidyeganeh M; Pinelli A Flow Turbul Combust; 2018; 100(4):1111-1143. PubMed ID: 30069151 [TBL] [Abstract][Full Text] [Related]
52. Aerodynamic characteristics of the ventilated design for flapping wing micro air vehicle. Zhang GQ; Yu SC ScientificWorldJournal; 2014; 2014():410749. PubMed ID: 24683339 [TBL] [Abstract][Full Text] [Related]
53. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Feo TJ; Field DJ; Prum RO Proc Biol Sci; 2015 Mar; 282(1803):20142864. PubMed ID: 25673687 [TBL] [Abstract][Full Text] [Related]
54. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance. Holden D; Socha JJ; Cardwell ND; Vlachos PP J Exp Biol; 2014 Feb; 217(Pt 3):382-94. PubMed ID: 24477611 [TBL] [Abstract][Full Text] [Related]
55. The control of flight force by a flapping wing: lift and drag production. Sane SP; Dickinson MH J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111 [TBL] [Abstract][Full Text] [Related]
56. Ways that Animal Wings Produce Sound. Clark CJ Integr Comp Biol; 2021 Sep; 61(2):696-709. PubMed ID: 33693721 [TBL] [Abstract][Full Text] [Related]
57. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Fu J; Liu X; Shyy W; Qiu H Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888 [TBL] [Abstract][Full Text] [Related]
58. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors. Kruyt JW; Quicazán-Rubio EM; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079868 [TBL] [Abstract][Full Text] [Related]
59. Capturing wake capture: a 2D numerical investigation into wing-wake interaction aerodynamics. Li H; Nabawy MRA Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36215970 [TBL] [Abstract][Full Text] [Related]
60. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control. Wang C; Tang H Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]