BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37715307)

  • 1. An Inverse Modeling Approach to Estimate Three-Dimensional Aortic Valve Interstitial Cell Stress Fiber Force Levels.
    Khang A; Meyer K; Sacks MS
    J Biomech Eng; 2023 Dec; 145(12):. PubMed ID: 37715307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of aortic valve interstitial cell-induced 3D remodeling of poly(ethylene glycol) hydrogel environments using an inverse finite element approach.
    Khang A; Steinman J; Tuscher R; Feng X; Sacks MS
    Acta Biomater; 2023 Apr; 160():123-133. PubMed ID: 36812955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional analysis of hydrogel-imbedded aortic valve interstitial cell shape and its relation to contractile behavior.
    Khang A; Nguyen Q; Feng X; Howsmon DP; Sacks MS
    Acta Biomater; 2023 Jun; 163():194-209. PubMed ID: 35085795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels.
    Khang A; Gonzalez Rodriguez A; Schroeder ME; Sansom J; Lejeune E; Anseth KS; Sacks MS
    Acta Biomater; 2019 Sep; 96():354-367. PubMed ID: 31323351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.
    Sakamoto Y; Buchanan RM; Sacks MS
    J Mech Behav Biomed Mater; 2016 Feb; 54():244-58. PubMed ID: 26476967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional differences in human aortic valve interstitial cells from patients with varying calcific aortic valve disease.
    Tuscher R; Khang A; West TM; Camillo C; Ferrari G; Sacks MS
    Front Physiol; 2023; 14():1168691. PubMed ID: 37405132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading.
    Huang HY; Liao J; Sacks MS
    J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction.
    Khang A; Lejeune E; Abbaspour A; Howsmon DP; Sacks MS
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33876206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of cellular contraction on aortic valve leaflet flexural stiffness.
    Merryman WD; Huang HY; Schoen FJ; Sacks MS
    J Biomech; 2006; 39(1):88-96. PubMed ID: 16271591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TLR4 Stimulation Promotes Human AVIC Fibrogenic Activity through Upregulation of Neurotrophin 3 Production.
    Yao Q; The E; Ao L; Zhai Y; Osterholt MK; Fullerton DA; Meng X
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32074942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells.
    Merryman WD; Liao J; Parekh A; Candiello JE; Lin H; Sacks MS
    Tissue Eng; 2007 Sep; 13(9):2281-9. PubMed ID: 17596117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach.
    Sakamoto Y; Buchanan RM; Sanchez-Adams J; Guilak F; Sacks MS
    J Biomech Eng; 2017 Feb; 139(2):0210071-02100713. PubMed ID: 28024085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic properties of the aortic valve interstitial cell.
    Merryman WD; Bieniek PD; Guilak F; Sacks MS
    J Biomech Eng; 2009 Apr; 131(4):041005. PubMed ID: 19275434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monocytes enhance the inflammatory response to TLR2 stimulation in aortic valve interstitial cells through paracrine up-regulation of TLR2 level.
    Zhang P; The E; Nedumaran B; Ao L; Jarrett MJ; Xu D; Fullerton DA; Meng X
    Int J Biol Sci; 2020; 16(15):3062-3074. PubMed ID: 33061818
    [No Abstract]   [Full Text] [Related]  

  • 15. Monocytes augment inflammatory responses in human aortic valve interstitial cells via β
    Luo Z; The E; Zhang P; Zhai Y; Yao Q; Ao L; Zeng Q; Fullerton DA; Meng X
    Inflamm Res; 2022 Jun; 71(5-6):681-694. PubMed ID: 35411432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment.
    Mabry KM; Lawrence RL; Anseth KS
    Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro.
    Capulli AK; MacQueen LA; O'Connor BB; Dauth S; Parker KK
    Cardiovasc Pathol; 2016; 25(4):316-324. PubMed ID: 27174867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of strain history on aortic valve interstitial cell activation in a 3D hydrogel environment.
    West TM; Howsmon DP; Massidda MW; Vo HN; Janobas AA; Baker AB; Sacks MS
    APL Bioeng; 2023 Jun; 7(2):026101. PubMed ID: 37035541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pro-inflammatory mediators released by activated monocytes promote aortic valve fibrocalcific activity.
    Zhang P; The E; Luo Z; Zhai Y; Yao Q; Ao L; Fullerton DA; Xu D; Meng X
    Mol Med; 2022 Jan; 28(1):5. PubMed ID: 35062861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.