These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 37715336)

  • 1. Optically Active MXenes in Van der Waals Heterostructures.
    Purbayanto MAK; Chandel M; Birowska M; Rosenkranz A; Jastrzębska AM
    Adv Mater; 2023 Oct; 35(42):e2301850. PubMed ID: 37715336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
    Lee JY; Shin JH; Lee GH; Lee CH
    Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach.
    Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. van der Waals Layered Materials: Opportunities and Challenges.
    Duong DL; Yun SJ; Lee YH
    ACS Nano; 2017 Dec; 11(12):11803-11830. PubMed ID: 29219304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures.
    Xu C; Ding Y; Wang S; Cao S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123182. PubMed ID: 37517268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances on Tuning the Interlayer Coupling and Properties in van der Waals Heterostructures.
    Wu X; Chen X; Yang R; Zhan J; Ren Y; Li K
    Small; 2022 Apr; 18(15):e2105877. PubMed ID: 35044721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures.
    Choi EM; Sim KI; Burch KS; Lee YH
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200186. PubMed ID: 35596612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of spin-orbital coupling effects on the electronic structure of two dimensional van der Waals heterostructures.
    You B; Wang X; Mi W
    Phys Chem Chem Phys; 2015 Dec; 17(46):31253-9. PubMed ID: 26549052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxial Atomic Substitution for MoS
    Li T; Cao J; Gao H; Wang Z; Geiwitz M; Burch KS; Ling X
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57144-57152. PubMed ID: 36516339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Controlled Ultrafast Magnetic State Transition in Antiferromagnetic-Ferromagnetic van der Waals Heterostructures.
    Li S; Zhou L; Frauenheim T; He J
    J Phys Chem Lett; 2022 Jul; 13(26):6223-6229. PubMed ID: 35770897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D layered BP/InSe and BP/Janus In
    Cheng K; Xu J; Guo X; Guo S; Su Y
    Phys Chem Chem Phys; 2023 Jul; 25(26):17360-17369. PubMed ID: 37347175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General synthesis of mixed-dimensional van der Waals heterostructures with hexagonal symmetry.
    Qin L; Lu Y; Li Q; Wang Z; Wang J; Tang B; Zhou W; Yuan C; Wang Q; Wang L
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34551405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Area Synthesis of Ferromagnetic Fe
    Lv H; da Silva A; Figueroa AI; Guillemard C; Aguirre IF; Camosi L; Aballe L; Valvidares M; Valenzuela SO; Schubert J; Schmidbauer M; Herfort J; Hanke M; Trampert A; Engel-Herbert R; Ramsteiner M; Lopes JMJ
    Small; 2023 Sep; 19(39):e2302387. PubMed ID: 37231567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures.
    Wu H; Liu X; Zhu K; Huang Y
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer.
    Boandoh S; Agyapong-Fordjour FO; Choi SH; Lee JS; Park JH; Ko H; Han G; Yun SJ; Park S; Kim YM; Yang W; Lee YH; Kim SM; Kim KK
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1579-1586. PubMed ID: 30525400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities.
    Liang SJ; Cheng B; Cui X; Miao F
    Adv Mater; 2020 Jul; 32(27):e1903800. PubMed ID: 31608514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-order superlattices by rolling up van der Waals heterostructures.
    Zhao B; Wan Z; Liu Y; Xu J; Yang X; Shen D; Zhang Z; Guo C; Qian Q; Li J; Wu R; Lin Z; Yan X; Li B; Zhang Z; Ma H; Li B; Chen X; Qiao Y; Shakir I; Almutairi Z; Wei F; Zhang Y; Pan X; Huang Y; Ping Y; Duan X; Duan X
    Nature; 2021 Mar; 591(7850):385-390. PubMed ID: 33731947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoironing van der Waals Heterostructures toward Electrically Controlled Quantum Dots.
    Talha-Dean T; Tarn Y; Mukherjee S; John JW; Huang D; Verzhbitskiy IA; Venkatakrishnarao D; Das S; Lee R; Mishra A; Wang S; Ang YS; Johnson Goh KE; Lau CS
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31738-31746. PubMed ID: 38843175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics.
    Kim J; Rhee D; Song O; Kim M; Kwon YH; Lim DU; Kim IS; Mazánek V; Valdman L; Sofer Z; Cho JH; Kang J
    Adv Mater; 2022 Mar; 34(12):e2106110. PubMed ID: 34933395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials.
    Gao H; Wang Z; Cao J; Lin YC; Ling X
    ACS Nano; 2024 Jul; 18(26):16343-16358. PubMed ID: 38899467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.