These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37715500)
1. A Bayesian framework for pathway-guided identification of cancer subgroups by integrating multiple types of genomic data. Sun Z; Chung D; Neelon B; Millar-Wilson A; Ethier SP; Xiao F; Zheng Y; Wallace K; Hardiman G Stat Med; 2023 Dec; 42(28):5266-5284. PubMed ID: 37715500 [TBL] [Abstract][Full Text] [Related]
2. Semi-supervised identification of cancer subgroups using survival outcomes and overlapping grouping information. Wei W; Sun Z; da Silveira WA; Yu Z; Lawson A; Hardiman G; Kelemen LE; Chung D Stat Methods Med Res; 2019 Jul; 28(7):2137-2149. PubMed ID: 29336210 [TBL] [Abstract][Full Text] [Related]
3. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380 [TBL] [Abstract][Full Text] [Related]
4. Bayesian variable selection with graphical structure learning: Applications in integrative genomics. Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495 [TBL] [Abstract][Full Text] [Related]
5. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework. Yang H; Wei Q; Zhong X; Yang H; Li B Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769 [TBL] [Abstract][Full Text] [Related]
6. A Bayesian two-way latent structure model for genomic data integration reveals few pan-genomic cluster subtypes in a breast cancer cohort. Swanson DM; Lien T; Bergholtz H; Sørlie T; Frigessi A Bioinformatics; 2019 Dec; 35(23):4886-4897. PubMed ID: 31077301 [TBL] [Abstract][Full Text] [Related]
7. Latent Feature Decompositions for Integrative Analysis of Multi-Platform Genomic Data. Gregory KB; Momin AA; Coombes KR; Baladandayuthapani V IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):984-94. PubMed ID: 26146492 [TBL] [Abstract][Full Text] [Related]
8. Bayesian generalized biclustering analysis via adaptive structured shrinkage. Li Z; Chang C; Kundu S; Long Q Biostatistics; 2020 Jul; 21(3):610-624. PubMed ID: 30596887 [TBL] [Abstract][Full Text] [Related]
9. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery. Bansal B; Sahoo A Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961 [TBL] [Abstract][Full Text] [Related]
10. Bayesian structural equation modeling in multiple omics data with application to circadian genes. Maity AK; Lee SC; Mallick BK; Sarkar TR Bioinformatics; 2020 Jul; 36(13):3951-3958. PubMed ID: 32369552 [TBL] [Abstract][Full Text] [Related]
11. Integrative network-based Bayesian analysis of diverse genomics data. Wang W; Baladandayuthapani V; Holmes CC; Do KA BMC Bioinformatics; 2013; 14 Suppl 13(Suppl 13):S8. PubMed ID: 24267288 [TBL] [Abstract][Full Text] [Related]
13. A Bayesian integrative approach for multi-platform genomic data: A kidney cancer case study. Chekouo T; Stingo FC; Doecke JD; Do KA Biometrics; 2017 Jun; 73(2):615-624. PubMed ID: 27669160 [TBL] [Abstract][Full Text] [Related]
14. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. Kim D; Li R; Dudek SM; Ritchie MD J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077 [TBL] [Abstract][Full Text] [Related]
15. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
16. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration. Pierre-Jean M; Deleuze JF; Le Floch E; Mauger F Brief Bioinform; 2020 Dec; 21(6):2011-2030. PubMed ID: 31792509 [TBL] [Abstract][Full Text] [Related]