These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37715500)

  • 21. Bayesian negative binomial mixture regression models for the analysis of sequence count and methylation data.
    Li Q; Cassese A; Guindani M; Vannucci M
    Biometrics; 2019 Mar; 75(1):183-192. PubMed ID: 30125947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tutorial on survival modeling with applications to omics data.
    Zhao Z; Zobolas J; Zucknick M; Aittokallio T
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38445722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian tensor factorization-drive breast cancer subtyping by integrating multi-omics data.
    Liu Q; Cheng B; Jin Y; Hu P
    J Biomed Inform; 2022 Jan; 125():103958. PubMed ID: 34839017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data.
    Wang W; Baladandayuthapani V; Morris JS; Broom BM; Manyam G; Do KA
    Bioinformatics; 2013 Jan; 29(2):149-59. PubMed ID: 23142963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A sparse negative binomial mixture model for clustering RNA-seq count data.
    Li Y; Rahman T; Ma T; Tang L; Tseng GC
    Biostatistics; 2022 Dec; 24(1):68-84. PubMed ID: 34363675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration.
    Seal DB; Das V; Goswami S; De RK
    Genomics; 2020 Jul; 112(4):2833-2841. PubMed ID: 32234433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A statistical framework for biomedical literature mining.
    Chung D; Lawson A; Zheng WJ
    Stat Med; 2017 Sep; 36(22):3461-3474. PubMed ID: 28675924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bayesian meta-analysis models for cross cancer genomic investigation of pleiotropic effects using group structure.
    Baghfalaki T; Sugier PE; Truong T; Pettitt AN; Mengersen K; Liquet B
    Stat Med; 2021 Mar; 40(6):1498-1518. PubMed ID: 33368447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TCGAplot: an R package for integrative pan-cancer analysis and visualization of TCGA multi-omics data.
    Liao C; Wang X
    BMC Bioinformatics; 2023 Dec; 24(1):483. PubMed ID: 38105215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies.
    Kim SY; Jeong HH; Kim J; Moon JH; Sohn KA
    Biol Direct; 2019 Apr; 14(1):8. PubMed ID: 31036036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inferring network structure in non-normal and mixed discrete-continuous genomic data.
    Bhadra A; Rao A; Baladandayuthapani V
    Biometrics; 2018 Mar; 74(1):185-195. PubMed ID: 28437848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction.
    Montesinos-López OA; Montesinos-López A; Luna-Vázquez FJ; Toledo FH; Pérez-Rodríguez P; Lillemo M; Crossa J
    G3 (Bethesda); 2019 May; 9(5):1355-1369. PubMed ID: 30819822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian joint analysis of heterogeneous genomics data.
    Ray P; Zheng L; Lucas J; Carin L
    Bioinformatics; 2014 May; 30(10):1370-6. PubMed ID: 24489367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction.
    Treppmann T; Ickstadt K; Zucknick M
    Comput Math Methods Med; 2017; 2017():7340565. PubMed ID: 28828032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of integrative clustering methods for the analysis of multi-omics data.
    Chauvel C; Novoloaca A; Veyre P; Reynier F; Becker J
    Brief Bioinform; 2020 Mar; 21(2):541-552. PubMed ID: 31220206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.