BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37715993)

  • 1. The self-distillation trained multitask dense-attention network for diagnosing lung cancers based on CT scans.
    Chen L; Zhang Z
    Med Phys; 2024 Mar; 51(3):1738-1753. PubMed ID: 37715993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
    Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W
    Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images.
    Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D
    Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas.
    Zhao W; Yang J; Sun Y; Li C; Wu W; Jin L; Yang Z; Ni B; Gao P; Wang P; Hua Y; Li M
    Cancer Res; 2018 Dec; 78(24):6881-6889. PubMed ID: 30279243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma.
    Huang H; Zheng D; Chen H; Wang Y; Chen C; Xu L; Li G; Wang Y; He X; Li W
    Med Phys; 2022 Oct; 49(10):6384-6394. PubMed ID: 35938604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMAL-Net: Interpretable multi-task attention learning network for invasive lung adenocarcinoma screening in CT images.
    Wang J; Yuan C; Han C; Wen Y; Lu H; Liu C; She Y; Deng J; Li B; Qian D; Chen C
    Med Phys; 2021 Dec; 48(12):7913-7929. PubMed ID: 34674280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Prediction of recurrence-free survival in lung adenocarcinoma based on self-supervised pre-training and multi-task learning].
    Hu L; Xia W; Li Q; Gao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):205-212. PubMed ID: 38686399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.
    Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y
    Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAM-DenseNet: A Deep Convolutional Neural Network for Computer-Aided COVID-19 Diagnosis.
    Xiao B; Yang Z; Qiu X; Xiao J; Wang G; Zeng W; Li W; Nian Y; Chen W
    IEEE Trans Cybern; 2022 Nov; 52(11):12163-12174. PubMed ID: 34428169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution-based distillation for efficient histology image classification.
    DiPalma J; Suriawinata AA; Tafe LJ; Torresani L; Hassanpour S
    Artif Intell Med; 2021 Sep; 119():102136. PubMed ID: 34531005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CLSSL-ResNet: Predicting malignancy of solitary pulmonary nodules from CT images by chimeric label with self-supervised learning.
    Zhao T; Qi S; Yue Y; Zhang B; Li J; Wen Y; Yao Y; Qian W; Guan Y
    J Xray Sci Technol; 2023; 31(5):981-999. PubMed ID: 37424490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Res-trans networks for lung nodule classification.
    Liu D; Liu F; Tie Y; Qi L; Wang F
    Int J Comput Assist Radiol Surg; 2022 Jun; 17(6):1059-1068. PubMed ID: 35290646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the invasiveness of ground-glass nodules using a 3D multi-task network.
    Yu Y; Wang N; Huang N; Liu X; Zheng Y; Fu Y; Li X; Wu H; Xu J; Cheng J
    Eur Radiol; 2021 Sep; 31(9):7162-7171. PubMed ID: 33665717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CT-Based Deep Learning Model for Invasiveness Classification and Micropapillary Pattern Prediction Within Lung Adenocarcinoma.
    Ding H; Xia W; Zhang L; Mao Q; Cao B; Zhao Y; Xu L; Jiang F; Dong G
    Front Oncol; 2020; 10():1186. PubMed ID: 32775302
    [No Abstract]   [Full Text] [Related]  

  • 16. Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning.
    Ashraf SF; Yin K; Meng CX; Wang Q; Wang Q; Pu J; Dhupar R
    J Thorac Cardiovasc Surg; 2022 Apr; 163(4):1496-1505.e10. PubMed ID: 33726909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-recognizable CT image features of subsolid lung nodules associated with diagnosis and classification by convolutional neural networks.
    Jiang B; Zhang Y; Zhang L; H de Bock G; Vliegenthart R; Xie X
    Eur Radiol; 2021 Oct; 31(10):7303-7315. PubMed ID: 33847813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
    Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J
    Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning combined with radiomics may optimize the prediction in differentiating high-grade lung adenocarcinomas in ground glass opacity lesions on CT scans.
    Wang X; Zhang L; Yang X; Tang L; Zhao J; Chen G; Li X; Yan S; Li S; Yang Y; Kang Y; Li Q; Wu N
    Eur J Radiol; 2020 Aug; 129():109150. PubMed ID: 32604042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid component proportion is an important predictor of tumor invasiveness in clinical stage T
    Li M; Wu N; Zhang L; Sun W; Liu Y; Lv L; Ren J; Lin D
    Cancer Imaging; 2018 May; 18(1):18. PubMed ID: 29728140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.