These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37716391)
21. Relative extraction ratio (RER) for arsenic and heavy metals in soils and tailings from various metal mines, Korea. Son HO; Jung MC Environ Geochem Health; 2011 Jan; 33 Suppl 1():121-32. PubMed ID: 21072568 [TBL] [Abstract][Full Text] [Related]
22. Rapid Dissolution of Noble Metals in Organic Solvents. Nag A; Morrison CA; Love JB ChemSusChem; 2022 Oct; 15(20):e202201285. PubMed ID: 35929761 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203 [TBL] [Abstract][Full Text] [Related]
24. Rare earth element recycling from waste nickel-metal hydride batteries. Yang X; Zhang J; Fang X J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667 [TBL] [Abstract][Full Text] [Related]
25. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H Esmaeili M; Rastegar SO; Beigzadeh R; Gu T Chemosphere; 2020 Sep; 254():126670. PubMed ID: 32325352 [TBL] [Abstract][Full Text] [Related]
26. Leaching process for recovering valuable metals from the LiNi He LP; Sun SY; Song XF; Yu JG Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707 [TBL] [Abstract][Full Text] [Related]
27. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Chen X; Cao L; Kang D; Li J; Zhou T; Ma H Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000 [TBL] [Abstract][Full Text] [Related]
28. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries. Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474 [TBL] [Abstract][Full Text] [Related]
29. Recovery of Platinum-Group Metals from an Unconventional Source of Catalytic Converter Using Pressure Cyanide Leaching and Ionic Liquid Extraction. Ilyas S; Kim H JOM (1989); 2022; 74(3):1020-1026. PubMed ID: 35039739 [TBL] [Abstract][Full Text] [Related]
30. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts. Zheng H; Ding Y; Wen Q; Zhao S; He X; Zhang S; Dong C Sci Total Environ; 2022 Jan; 802():149830. PubMed ID: 34464795 [TBL] [Abstract][Full Text] [Related]
31. Ultrasound-assisted efficient and convenient method of extracting valuable metals (Ni, Co, and Cd) from waste Ni-Cd batteries using DL-malic acid. Hossain Khan MI; Rana M; Jo YT; Park JH J Environ Manage; 2024 Aug; 366():121706. PubMed ID: 38981270 [TBL] [Abstract][Full Text] [Related]
32. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441 [TBL] [Abstract][Full Text] [Related]
33. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Peng C; Hamuyuni J; Wilson BP; Lundström M Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945 [TBL] [Abstract][Full Text] [Related]
34. A simple and accurate method for the determination of Rh, Pd, and Pt in e-waste and spent automotive catalysts using HR-CS FAAS for assessing the value of secondary raw materials. Zabielska-Konopka M; Zambrzycka-Szelewa E; Kowalewska Z; Godlewska-Żyłkiewicz B Talanta; 2025 Jan; 281():126894. PubMed ID: 39303326 [TBL] [Abstract][Full Text] [Related]
35. Selective leaching process for efficient and rapid recycling of spent lithium iron phosphate batteries. Xiong Y; Guo Z; Mei T; Han Y; Wang Y; Xiong X; Tang Y; Wang X Waste Manag Res; 2023 Nov; 41(11):1613-1621. PubMed ID: 37102334 [TBL] [Abstract][Full Text] [Related]
36. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries. Liu X; Huang K; Xiong H; Dong H Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608 [TBL] [Abstract][Full Text] [Related]
37. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Weibel G; Eggenberger U; Kulik DA; Hummel W; Schlumberger S; Klink W; Fisch M; Mäder UK Waste Manag; 2018 Jun; 76():457-471. PubMed ID: 29559296 [TBL] [Abstract][Full Text] [Related]
38. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Li L; Ge J; Chen R; Wu F; Chen S; Zhang X Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431 [TBL] [Abstract][Full Text] [Related]
39. An Efficient Leaching of Palladium from Spent Catalysts through Oxidation with Fe(III). Ding Y; Zheng H; Li J; Zhang S; Liu B; Ekberg C Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013817 [TBL] [Abstract][Full Text] [Related]
40. Coupling the recovery of spent lithium-ion batteries and the treatment of phenol wastewater: A "treating waste with waste" strategy. Luo S; Zhu X; Gong M; Mo R; Yang S Chemosphere; 2023 Nov; 341():140018. PubMed ID: 37657706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]