These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3771643)

  • 1. Isolation, characterization, and localization of the spanning protein from skeletal muscle triads.
    Kawamoto RM; Brunschwig JP; Kim KC; Caswell AH
    J Cell Biol; 1986 Oct; 103(4):1405-14. PubMed ID: 3771643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization by immunoelectron microscopy of spanning protein of triad junction in terminal cisternae/triad vesicles.
    Kawamoto RM; Brunschwig JP; Caswell AH
    J Muscle Res Cell Motil; 1988 Aug; 9(4):334-43. PubMed ID: 3220950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and extraction of proteins that compose the triad junction of skeletal muscle.
    Caswell AH; Brunschwig JP
    J Cell Biol; 1984 Sep; 99(3):929-39. PubMed ID: 6470045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the association of dystrophin with the transverse tubular system in skeletal muscle.
    Knudson CM; Hoffman EP; Kahl SD; Kunkel LM; Campbell KP
    J Biol Chem; 1988 Jun; 263(17):8480-4. PubMed ID: 3286650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reevaluation of the prevalences of serum autoantibodies reactive with "64-kd eye muscle proteins" in patients with thyroid-associated ophthalmopathy.
    Kubota S; Gunji K; Stolarski C; Kennerdell JS; Wall J
    Thyroid; 1998 Feb; 8(2):175-9. PubMed ID: 9510127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster.
    Saide JD; Chin-Bow S; Hogan-Sheldon J; Busquets-Turner L; Vigoreaux JO; Valgeirsdottir K; Pardue ML
    J Cell Biol; 1989 Nov; 109(5):2157-67. PubMed ID: 2509482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization.
    Francis GR; Waterston RH
    J Cell Biol; 1985 Oct; 101(4):1532-49. PubMed ID: 2413045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain?
    Nave R; Fürst DO; Weber K
    J Cell Biol; 1989 Nov; 109(5):2177-87. PubMed ID: 2478565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.
    Saito A; Seiler S; Chu A; Fleischer S
    J Cell Biol; 1984 Sep; 99(3):875-85. PubMed ID: 6147356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of triad junction reformation: identification and isolation of an endogenous promotor for junction reformation in skeletal muscle.
    Corbett AM; Caswell AH; Brandt NR; Brunschwig JP
    J Membr Biol; 1985; 86(3):267-76. PubMed ID: 4046012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of isolated triads.
    Mitchell RD; Saito A; Palade P; Fleischer S
    J Cell Biol; 1983 Apr; 96(4):1017-29. PubMed ID: 6187754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclonal antibodies distinguish titins from heart and skeletal muscle.
    Hill C; Weber K
    J Cell Biol; 1986 Mar; 102(3):1099-108. PubMed ID: 3512578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study.
    Franzini-Armstrong C; Kenney LJ; Varriano-Marston E
    J Cell Biol; 1987 Jul; 105(1):49-56. PubMed ID: 3497158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle.
    Jorgensen AO; Arnold W; Shen AC; Yuan SH; Gaver M; Campbell KP
    J Cell Biol; 1990 Apr; 110(4):1173-85. PubMed ID: 2157716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-localization of the dihydropyridine receptor and the cyclic AMP-binding subunit of an intrinsic protein kinase to the junctional membrane of the transverse tubules of skeletal muscle.
    Salvatori S; Damiani E; Barhanin J; Furlan S; Salviati G; Margreth A
    Biochem J; 1990 May; 267(3):679-87. PubMed ID: 2160233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile.
    Kruger M; Wright J; Wang K
    J Cell Biol; 1991 Oct; 115(1):97-107. PubMed ID: 1717482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and characterization of an intermediate filament-associated protein.
    Price KA; Malhotra SK; Koke JR
    Cytobios; 1993; 76(306-307):157-73. PubMed ID: 8181306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoelectron and immunofluorescence localization of desmin in mature avian muscles.
    Richardson FL; Stromer MH; Huiatt TW; Robson RM
    Eur J Cell Biol; 1981 Dec; 26(1):91-101. PubMed ID: 7035176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclonal antibody specific for the T-tubule of skeletal muscle.
    Malouf NN; Taylor S; Gillespie GY; Bynum JM; Wilson PE; Meissner G
    J Histochem Cytochem; 1986 Mar; 34(3):347-55. PubMed ID: 3950385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple, fast, one-step method for the purification of the skeletal-muscle ryanodine receptor.
    Shoshan-Barmatz V; Zarka A
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):61-4. PubMed ID: 1637323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.