These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37716571)

  • 1. Enhanced adsorption of roxarsone on iron-nitrogen co-doped biochar from peanut shell: Synthesis, performance and mechanism.
    Luo Z; Peng X; Liang W; Zhou D; Dang C; Cai W
    Bioresour Technol; 2023 Nov; 388():129762. PubMed ID: 37716571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Adsorption of a Sulfonamide Antibiotic in Aqueous Solutions with N-doped Magnetic Biochar: Performance, Mechanism, and Reusability.
    Diao Y; Shan R; Li M; Gu J; Yuan H; Chen Y
    ACS Omega; 2023 Jan; 8(1):879-892. PubMed ID: 36643494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of micropollutants from wastewater using iron and nitrogen co-doped biochar: Performance, kinetics and mechanism studies.
    Xu L; Wu C; Chai C; Cao S; Bai X; Ma K; Jin X; Shi X; Jin P
    J Hazard Mater; 2022 Feb; 424(Pt C):127606. PubMed ID: 34808447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped biochar (N-doped BC) and iron/nitrogen co-doped biochar (Fe/N co-doped BC) for removal of refractory organic pollutants.
    Ahmad S; Liu L; Zhang S; Tang J
    J Hazard Mater; 2023 Mar; 446():130727. PubMed ID: 36630878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: Preparation, performance, mechanism and reusability.
    Li X; Shi J; Luo X
    Bioresour Technol; 2022 Jan; 343():126103. PubMed ID: 34634463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-doped and activated porous biochar derived from cocoa shell for removing norfloxacin from aqueous solution: Performance assessment and mechanism insight.
    Guy Laurent Zanli BL; Tang W; Chen J
    Environ Res; 2022 Nov; 214(Pt 3):113951. PubMed ID: 35981615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of co-pyrolyzed biochar using red mud and peanut shell for removing phosphate from pickling wastewater: Performance and mechanism.
    Zhang C; Dong Y; Yang D; Jin Q; Lin H
    Chemosphere; 2023 Aug; 331():138841. PubMed ID: 37142105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution.
    Mei Y; Xu J; Zhang Y; Li B; Fan S; Xu H
    Bioresour Technol; 2021 Apr; 325():124732. PubMed ID: 33493749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: Adsorption and redox transformation.
    Li B; Wei D; Li Z; Zhou Y; Li Y; Huang C; Long J; Huang H; Tie B; Lei M
    J Hazard Mater; 2020 May; 389():122091. PubMed ID: 31972529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead(II) removal.
    Jiang S; Yan L; Wang R; Li G; Rao P; Ju M; Jian L; Guo X; Che L
    Chemosphere; 2022 Jan; 286(Pt 1):131666. PubMed ID: 34320439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced adsorption of phosphate from pickling wastewater by Fe-N co-pyrolysis biochar: Performance, mechanism and reusability.
    Zhang C; Dong Y; Liu W; Yang D; Liu J; Lu Y; Lin H
    Bioresour Technol; 2023 Feb; 369():128263. PubMed ID: 36343782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of biochar derived from waste cotton woven by low-dosage Fe(NO
    Xu Z; Wang Y; Wu M; Chen W
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49523-49535. PubMed ID: 36781670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Characterization, and Adsorption Properties of Nitrogen-Doped Nanoporous Biochar: Efficient Removal of Reactive Orange 16 Dye and Colorful Effluents.
    Ekman S; Dos Reis GS; Laisné E; Thivet J; Grimm A; Lima EC; Naushad M; Dotto GL
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced removal of metal-cyanide complexes from wastewater by Fe-impregnated biochar: Adsorption performance and removal mechanism.
    Wei Y; Chen L; Jiao G; Wen Y; Liao Q; Zhou H; Tang S
    Chemosphere; 2023 Aug; 331():138719. PubMed ID: 37086981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step preparation of Fe/N co-doped porous biochar for chromium(VI) and bisphenol a decontamination in water: Insights to co-activation and adsorption mechanisms.
    Qu J; Zhang X; Liu S; Li X; Wang S; Feng Z; Wu Z; Wang L; Jiang Z; Zhang Y
    Bioresour Technol; 2022 Oct; 361():127718. PubMed ID: 35917861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of novel Fe/Mn/N co-doped biochar and its enhanced adsorption for bisphenol a based on π-π electron donor-acceptor interaction.
    Ding H; Zhang Z; Li Y; Ding L; Sun D; Dong Z
    Bioresour Technol; 2022 Nov; 364():128018. PubMed ID: 36162783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-activated bermudagrass-derived biochar for adsorption of aqueous sulfamethoxazole: Effects of iron impregnation ratio on biochar properties, adsorption, and regeneration.
    Zeng S; Choi YK; Kan E
    Sci Total Environ; 2021 Jan; 750():141691. PubMed ID: 32853938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K
    Pei T; Shi F; Liu C; Lu Y; Lin X; Hou D; Yang S; Li J; Zheng Z; Zheng Y
    Environ Pollut; 2023 Aug; 331(Pt 1):121871. PubMed ID: 37225081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(Ⅵ) and tetracycline from water.
    Qu J; Zhang W; Bi F; Yan S; Miao X; Zhang B; Wang Y; Ge C; Zhang Y
    Environ Pollut; 2022 Aug; 306():119398. PubMed ID: 35525521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous adsorption of tetracycline, ammonium and phosphate from wastewater by iron and nitrogen modified biochar: Kinetics, isotherm, thermodynamic and mechanism.
    Li X; Shi J
    Chemosphere; 2022 Apr; 293():133574. PubMed ID: 35016962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.