These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37716660)

  • 1. Recent advances in the metabolic engineering and physiological opportunities for microbial synthesis of L-aspartic acid family amino acids: A review.
    Wang Y; Bai Y; Zeng Q; Jiang Z; Liu Y; Wang X; Liu X; Liu C; Min W
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126916. PubMed ID: 37716660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives.
    Li Y; Wei H; Wang T; Xu Q; Zhang C; Fan X; Ma Q; Chen N; Xie X
    Bioresour Technol; 2017 Dec; 245(Pt B):1588-1602. PubMed ID: 28579173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic pathways and fermentative production of L-aspartate family amino acids.
    Park JH; Lee SY
    Biotechnol J; 2010 Jun; 5(6):560-77. PubMed ID: 20518059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids.
    Yin L; Zhou Y; Ding N; Fang Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Engineering of microorganisms for high production of amino acids].
    Guo L; Gao X; Zhang H
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1711-1727. PubMed ID: 38914487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum.
    Tsuge Y; Matsuzawa H
    World J Microbiol Biotechnol; 2021 Feb; 37(3):49. PubMed ID: 33569648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum.
    Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine.
    Dong X; Quinn PJ; Wang X
    Biotechnol Adv; 2011; 29(1):11-23. PubMed ID: 20688145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial production of L-lysine in Corynebacterium glutamicum: Progress and prospects.
    Liu J; Xu JZ; Rao ZM; Zhang WG
    Microbiol Res; 2022 Sep; 262():127101. PubMed ID: 35803058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for efficient production of l-arginine.
    Hai-De W; Shuai L; Bing-Bing W; Jie L; Jian-Zhong X; Wei-Guo Z
    Adv Appl Microbiol; 2023; 122():127-150. PubMed ID: 37085192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review.
    Wang YY; Xu JZ; Zhang WG
    Crit Rev Biotechnol; 2019 Aug; 39(5):633-647. PubMed ID: 31055970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial metabolic engineering for L-threonine production.
    Dong X; Quinn PJ; Wang X
    Subcell Biochem; 2012; 64():283-302. PubMed ID: 23080256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in fermentative production of L-tryptophan: a review].
    Shen G; Liu Y; Ji N; Zhang Y; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):621-643. PubMed ID: 38545968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Updates on industrial production of amino acids using Corynebacterium glutamicum.
    Wendisch VF; Jorge JMP; Pérez-García F; Sgobba E
    World J Microbiol Biotechnol; 2016 Jun; 32(6):105. PubMed ID: 27116971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of L-valine from metabolically engineered Corynebacterium glutamicum.
    Wang X; Zhang H; Quinn PJ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4319-4330. PubMed ID: 29594358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects.
    Liu J; Xu JZ; Wang B; Rao ZM; Zhang WG
    Amino Acids; 2021 Sep; 53(9):1301-1312. PubMed ID: 34401958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of L-serine and its derivative L-cysteine from renewable feedstocks using
    Xu G; Zhang X; Xiao W; Shi J; Xu Z
    Crit Rev Biotechnol; 2024 May; 44(3):448-461. PubMed ID: 36944486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids.
    Yu S; Zheng B; Chen Z; Huo YX
    Microb Cell Fact; 2021 Dec; 20(1):230. PubMed ID: 34952576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.