BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37717042)

  • 21. A weighted bilinear neural collaborative filtering approach for drug repositioning.
    Meng Y; Lu C; Jin M; Xu J; Zeng X; Yang J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BETA: a comprehensive benchmark for computational drug-target prediction.
    Zong N; Li N; Wen A; Ngo V; Yu Y; Huang M; Chowdhury S; Jiang C; Fu S; Weinshilboum R; Jiang G; Hunter L; Liu H
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inferring new drug indications using the complementarity between clinical disease signatures and drug effects.
    Jang D; Lee S; Lee J; Kim K; Lee D
    J Biomed Inform; 2016 Feb; 59():248-57. PubMed ID: 26707452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomedical data and computational models for drug repositioning: a comprehensive review.
    Luo H; Li M; Yang M; Wu FX; Li Y; Wang J
    Brief Bioinform; 2021 Mar; 22(2):1604-1619. PubMed ID: 32043521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug-Target Binding Affinity Prediction.
    Wang S; Song X; Zhang Y; Zhang K; Liu Y; Ren C; Pang S
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions.
    Wang H; Huang F; Xiong Z; Zhang W
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network.
    Mayers M; Li TS; Queralt-Rosinach N; Su AI
    BMC Bioinformatics; 2019 Dec; 20(1):653. PubMed ID: 31829175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational drug repositioning through heterogeneous network clustering.
    Wu C; Gudivada RC; Aronow BJ; Jegga AG
    BMC Syst Biol; 2013; 7 Suppl 5(Suppl 5):S6. PubMed ID: 24564976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DDPD 1.0: a manually curated and standardized database of digital properties of approved drugs for drug-likeness evaluation and drug development.
    Li Q; Ma S; Zhang X; Zhai Z; Zhou L; Tao H; Wang Y; Pan J
    Database (Oxford); 2022 Feb; 2022():. PubMed ID: 35139189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomic-Guided Drug Repositioning Supported by a New Bioinformatics Search Tool: geneXpharma.
    Turanli B; Gulfidan G; Arga KY
    OMICS; 2017 Oct; 21(10):584-591. PubMed ID: 29049014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying Gene Signatures for Cancer Drug Repositioning Based on Sample Clustering.
    Wang F; Ding Y; Lei X; Liao B; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):953-965. PubMed ID: 32845842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug Repositioning: A Unique Approach to Refurbish Drug Discovery.
    Kale MA; Shamkuwar PB; Mourya VK; Deshpande AB; Shelke PA
    Curr Drug Discov Technol; 2022; 19(1):e140122192307. PubMed ID: 33726652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Task-driven knowledge graph filtering improves prioritizing drugs for repurposing.
    Ratajczak F; Joblin M; Ringsquandl M; Hildebrandt M
    BMC Bioinformatics; 2022 Mar; 23(1):84. PubMed ID: 35246025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DrugSig: A resource for computational drug repositioning utilizing gene expression signatures.
    Wu H; Huang J; Zhong Y; Huang Q
    PLoS One; 2017; 12(5):e0177743. PubMed ID: 28562632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications.
    Alshahrani M; Almansour A; Alkhaldi A; Thafar MA; Uludag M; Essack M; Hoehndorf R
    PeerJ; 2022; 10():e13061. PubMed ID: 35402106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational approach to drug repurposing using graph neural networks.
    Doshi S; Chepuri SP
    Comput Biol Med; 2022 Nov; 150():105992. PubMed ID: 36228466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knowledge Graphs for Indication Expansion: An Explainable Target-Disease Prediction Method.
    Gurbuz O; Alanis-Lobato G; Picart-Armada S; Sun M; Haslinger C; Lawless N; Fernandez-Albert F
    Front Genet; 2022; 13():814093. PubMed ID: 35360842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data.
    Wang F; Lei X; Wu FX
    Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Drug-Disease Associations via Using Gaussian Interaction Profile and Kernel-Based Autoencoder.
    Jiang HJ; Huang YA; You ZH
    Biomed Res Int; 2019; 2019():2426958. PubMed ID: 31534955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.