These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37717042)

  • 41. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs.
    Xiong Z; Huang F; Wang Z; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2623-2631. PubMed ID: 34375284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In silico drug repositioning: what we need to know.
    Liu Z; Fang H; Reagan K; Xu X; Mendrick DL; Slikker W; Tong W
    Drug Discov Today; 2013 Feb; 18(3-4):110-5. PubMed ID: 22935104
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A review of validation strategies for computational drug repositioning.
    Brown AS; Patel CJ
    Brief Bioinform; 2018 Jan; 19(1):174-177. PubMed ID: 27881429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system.
    Ye Q; Hsieh CY; Yang Z; Kang Y; Chen J; Cao D; He S; Hou T
    Nat Commun; 2021 Nov; 12(1):6775. PubMed ID: 34811351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EK-DRD: A Comprehensive Database for Drug Repositioning Inspired by Experimental Knowledge.
    Zhao C; Dai X; Li Y; Guo Q; Zhang J; Zhang X; Wang L
    J Chem Inf Model; 2019 Sep; 59(9):3619-3624. PubMed ID: 31433187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. JACOB: a dynamic database for computational chemistry benchmarking.
    Yang J; Waller MP
    J Chem Inf Model; 2012 Dec; 52(12):3255-62. PubMed ID: 23157388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery?
    Sahu NU; Kharkar PS
    Curr Top Med Chem; 2016; 16(19):2069-77. PubMed ID: 26881717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry.
    So HC; Chau CK; Chiu WT; Ho KS; Lo CP; Yim SH; Sham PC
    Nat Neurosci; 2017 Oct; 20(10):1342-1349. PubMed ID: 28805813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing.
    Nian Y; Hu X; Zhang R; Feng J; Du J; Li F; Bu L; Zhang Y; Chen Y; Tao C
    BMC Bioinformatics; 2022 Sep; 23(Suppl 6):407. PubMed ID: 36180861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NRLiSt BDB, the manually curated nuclear receptors ligands and structures benchmarking database.
    Lagarde N; Ben Nasr N; Jérémie A; Guillemain H; Laville V; Labib T; Zagury JF; Montes M
    J Med Chem; 2014 Apr; 57(7):3117-25. PubMed ID: 24666037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The assessment of efficient representation of drug features using deep learning for drug repositioning.
    Moridi M; Ghadirinia M; Sharifi-Zarchi A; Zare-Mirakabad F
    BMC Bioinformatics; 2019 Nov; 20(1):577. PubMed ID: 31726977
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drug knowledge bases and their applications in biomedical informatics research.
    Zhu Y; Elemento O; Pathak J; Wang F
    Brief Bioinform; 2019 Jul; 20(4):1308-1321. PubMed ID: 29304188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data.
    Wang Y; Chen S; Deng N; Wang Y
    PLoS One; 2013; 8(11):e78518. PubMed ID: 24244318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of drug gene associations via ontological profile similarity with application to drug repositioning.
    Kissa M; Tsatsaronis G; Schroeder M
    Methods; 2015 Mar; 74():71-82. PubMed ID: 25498216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning.
    Kim Y; Jung YS; Park JH; Kim SJ; Cho YR
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-Scale Biomedical Relation Extraction Across Diverse Relation Types: Model Development and Usability Study on COVID-19.
    Zhang Z; Fang M; Wu R; Zong H; Huang H; Tong Y; Xie Y; Cheng S; Wei Z; Crabbe MJC; Zhang X; Wang Y
    J Med Internet Res; 2023 Sep; 25():e48115. PubMed ID: 37632414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drug repositioning for enzyme modulator based on human metabolite-likeness.
    Lee YH; Choi H; Park S; Lee B; Yi GS
    BMC Bioinformatics; 2017 May; 18(Suppl 7):226. PubMed ID: 28617219
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A standard database for drug repositioning.
    Brown AS; Patel CJ
    Sci Data; 2017 Mar; 4():170029. PubMed ID: 28291243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.