BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37717229)

  • 1. Sustainable Porous Scaffolds with Retained Lignin as An Effective Light-absorbing Material for Efficient Photothermal Energy Conversion.
    Yang T; Zhang H; Huang C; Cai C; Gerhard C; Zhang K
    Small Methods; 2023 Nov; 7(11):e2300913. PubMed ID: 37717229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Functional Aligned and Interconnected Graphite Nanoplatelet Networks for Accelerating Solar Thermal Energy Harvesting and Storage within Phase Change Materials.
    Wu S; Li T; Wu M; Xu J; Chao J; Hu Y; Yan T; Li QY; Wang R
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19200-19210. PubMed ID: 33871977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage.
    Dai Z; Gao Y; Wang C; Wu D; Jiang Z; She X; Ding Y; Zhang X; Zhao D
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26863-26871. PubMed ID: 37230959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally Conductive Magnetic Composite Phase Change Materials for Anisotropic Photo/Magnetic-to-Thermal Energy Conversion.
    Cao H; Li SZ; Yang J; Liu ZY; Bai L; Yang W
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55723-55733. PubMed ID: 37992260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unidirectionally Structured Magnetic Phase-Change Composite Based on Carbonized Polyimide/Kevlar Nanofiber Complex Aerogel for Boosting Solar-Thermo-Electric Energy Conversion.
    Shi T; Liu H; Wang X
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10180-10195. PubMed ID: 38362656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Form-Stable Composite Phase Change Materials Based on Porous Copper-Graphene Heterostructures for Solar Thermal Energy Conversion and Storage.
    Chang C; Li B; Fu B; Yang X; Ji Y
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MXene-Integrated Solid-Solid Phase Change Composites for Accelerating Solar-Thermal Energy Storage and Electric Conversion.
    Usman A; Qin M; Xiong F; Aftab W; Shen Z; Bashir A; Han H; Han S; Zou R
    Small Methods; 2024 Feb; ():e2301458. PubMed ID: 38326035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine-Decorated Ti
    Du X; Wang J; Jin L; Deng S; Dong Y; Lin S
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15225-15234. PubMed ID: 35321540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eco-friendly synthesis of chemically cross-linked chitosan/cellulose nanocrystal/CMK-3 aerogel based shape-stable phase change material with enhanced energy conversion and storage.
    Cheng M; Yuan Y; Jing H; Hu J; Liu Q; Wei T; Wang R; Li W; Liu B
    Carbohydr Polym; 2024 Jan; 324():121514. PubMed ID: 37985052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of GO on the Structure and Properties of PEG/Biochar Phase Change Composites.
    Chen W; Zhang B; Wang S; Xue B; Liu S; An M; Yang Z; Xu G
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible Light Locking in Mineral-Based Composite Phase Change Materials Enabling High Photothermal Conversion and Storage.
    Zhao X; Tang Y; Wang J; Li Y; Li D; Zuo X; Yang H
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49132-49145. PubMed ID: 37831549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevating the Photothermal Conversion Efficiency of Phase-Change Materials Simultaneously toward Solar Energy Storage, Self-Healing, and Recyclability.
    Zhao S; Yuan A; Xu H; Wei Z; Zhou S; Xiao Y; Jiang L; Lei J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29213-29222. PubMed ID: 35714067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biorenewable Polymer-Based Light-Absorbing Porous Hydrogel for Efficient Solar Steam Desalination.
    Jeon J; Lee SH; Lee SR; Seo TH; Kim YK
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30692-30706. PubMed ID: 37326512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved
    Du X; Qiu J; Deng S; Du Z; Cheng X; Wang H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5695-5703. PubMed ID: 31920067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites.
    Wang C; Wang L; Liang W; Liu F; Wang S; Sun H; Zhu Z; Li A
    J Colloid Interface Sci; 2022 Jan; 605():60-70. PubMed ID: 34303925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembling all-wood-derived carbon/carbon dots-assisted phase change materials for high-efficiency thermal-energy harvesters.
    Shu L; Fang H; Feng S; Sun J; Yang F; Hu D; Cheng F
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128365. PubMed ID: 38000615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wood Lamella-Inspired Photothermal Stearic Acid-Eutectic Gallium-Indium-Based Phase Change Aerogel for Thermal Management and Infrared Stealth.
    Wei Z; Zhang Y; Cai C; Qu H; Fu Y; Tan SC
    Small; 2023 Nov; 19(46):e2302886. PubMed ID: 37485809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame-Retardant and Form-Stable Phase-Change Composites Based on Phytic Acid/ZnO-Decorated Surface-Carbonized Delignified Wood with Superior Solar-Thermal Conversion Efficiency and Improved Thermal Conductivity.
    Yue H; Wang J; Wang H; Du Z; Cheng X; Du X
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8093-8104. PubMed ID: 36727950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double Carbon Networks Reinforce the Thermal Storage and Thermal Transfer Properties of 1-Octadecanol Phase Change Materials.
    Wang X; Wang Q; Cheng X; Chen X; Bai M
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38004997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralight and Flexible Carbon Foam-Based Phase Change Composites with High Latent-Heat Capacity and Photothermal Conversion Capability.
    Wang W; Cai Y; Du M; Hou X; Liu J; Ke H; Wei Q
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31997-32007. PubMed ID: 31393694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.