BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37717769)

  • 1. Application of skeleton builders to sludge dewatering and disposal: A critical review.
    Bao P; Du C; Li Y; Jiang H; Zhou L; Yu G; Sun S; Zhou L; Li X; Teng J; Wang X; Wang J
    Sci Total Environ; 2024 Jan; 906():167106. PubMed ID: 37717769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dewatering performance and cracking-flocculation-skeleton mechanism of bioleaching-coal fly ash combined process for sewage sludge.
    Chen K; Sun Y; Fan J; Gu Y
    Chemosphere; 2022 Nov; 307(Pt 4):135994. PubMed ID: 35973485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptability of organic matter and solid content to Fe
    Li X; Shi Y; Zhou X; Wang L; Zhang H; Pi K; Gerson AR; Liu D
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14819-14829. PubMed ID: 34617233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical conditioning methods for sludge deep dewatering: A critical review.
    Liu Z; Luo F; He L; Wang S; Wu Y; Chen Z
    J Environ Manage; 2024 Jun; 360():121207. PubMed ID: 38788408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The porous structure effects of skeleton builders in sustainable sludge dewatering process.
    Zhang X; Kang H; Zhang Q; Hao X; Han X; Zhang W; Jiao T
    J Environ Manage; 2019 Jan; 230():14-20. PubMed ID: 30261441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive insight into the combined effects of Fenton's reagent and skeleton builders on sludge deep dewatering performance.
    Liu H; Yang J; Zhu N; Zhang H; Li Y; He S; Yang C; Yao H
    J Hazard Mater; 2013 Aug; 258-259():144-50. PubMed ID: 23721731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a cellulose filter aid in municipal sewage sludge dewatering and drying: Jar, pilot, and factory scale.
    Shi Q; Lu Y; Guo W; Wang T; Zhu Q; Zhang Y; Wang H; Li F; Xu T; Li C
    Water Environ Res; 2020 Apr; 92(4):495-503. PubMed ID: 31587441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Dewatering of Activated Sludge by Skeleton-Assisted Flocculation Process.
    Xia J; Rao T; Ji J; He B; Liu A; Sun Y
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of coffee ground-based skeleton builder with FeCl
    Zhang Y; Liu J; Bao Y; Liu P; Wei J; Li X; Wang Q; Ge Z
    Environ Sci Pollut Res Int; 2023 Aug; ():. PubMed ID: 37608176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of water transfer channel in sludge dewatering conditioned with skeleton builders by X-ray micro-computed tomography.
    Xiao K; Lv Y; Yu W; Yang J
    Chemosphere; 2024 May; 355():141818. PubMed ID: 38548085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced technology based for sewage sludge deep dewatering: A critical review.
    Cao B; Zhang T; Zhang W; Wang D
    Water Res; 2021 Feb; 189():116650. PubMed ID: 33246217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process control for improving dewatering performance of sewage sludge based on carbonaceous skeleton-assisted thermal hydrolysis.
    Xiao H; Liu H; Jin M; Deng H; Wang J; Yao H
    Chemosphere; 2022 Jun; 296():134006. PubMed ID: 35189199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations.
    Wu B; Dai X; Chai X
    Water Res; 2020 Aug; 180():115912. PubMed ID: 32422413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into sludge dewatering by advanced oxidation using persulfate as oxidant and Fe
    Guo J; Gao Q; Chen Y; He Q; Zhou H; Liu J; Zou C; Chen W
    J Environ Manage; 2021 Jun; 288():112476. PubMed ID: 33827020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives.
    Yuan H; Zhu N
    Sci Total Environ; 2024 Feb; 912():168605. PubMed ID: 37989393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of wastewater sludge dewatering performance using titanium salt coagulants (TSCs) in combination with magnetic nano-particles: Significance of titanium speciation.
    Zhang W; Chen Z; Cao B; Du Y; Wang C; Wang D; Ma T; Xia H
    Water Res; 2017 Mar; 110():102-111. PubMed ID: 27998782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalization of extracellular polymeric substances (EPS) solubilization and cake microstructure in relation to wastewater sludge dewatering behavior assisted by horizontal electric field: Effect of operating conditions.
    Cao B; Zhang W; Du Y; Wang R; Usher SP; Scales PJ; Wang D
    Water Res; 2018 Mar; 130():363-375. PubMed ID: 29253807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coagulation/flocculation in dewatering of sludge: A review.
    Wei H; Gao B; Ren J; Li A; Yang H
    Water Res; 2018 Oct; 143():608-631. PubMed ID: 30031298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review.
    Zhang X; Ye P; Wu Y
    J Environ Manage; 2022 Nov; 321():115938. PubMed ID: 35985273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into dewatering behavior and heavy metals transformation during waste activated sludge treatment by thermally-activated sodium persulfate oxidation combined with a skeleton builder-wheat straw biochar.
    Guo J; Gao Q; Jiang S
    Chemosphere; 2020 Aug; 252():126542. PubMed ID: 32213372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.