These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37718069)

  • 1. Validation of a portable shoe tread scanner to predict slip risk.
    Hemler SL; Beschorner KE
    J Safety Res; 2023 Sep; 86():5-11. PubMed ID: 37718069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    J Safety Res; 2020 Sep; 74():219-225. PubMed ID: 32951786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
    Sundaram VH; Hemler SL; Chanda A; Haight JM; Redfern MS; Beschorner KE
    J Biomech; 2020 May; 105():109797. PubMed ID: 32423543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of natural shoe wear on traction performance: a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    Footwear Sci; 2022; 14(1):1-12. PubMed ID: 37701063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
    Beschorner KE; Nasarwanji M; Deschler C; Hemler SL
    Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in Friction Performance between New and Worn Shoes.
    Cook A; Hemler S; Sundaram V; Chanda A; Beschorner K
    IISE Trans Occup Ergon Hum Factors; 2020; 8(4):209-214. PubMed ID: 33955322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shoe Tread Wear Occurs Primarily during Early Stance and Precedes the Peak Required Coefficient of Friction.
    Bharthi R; Sukinik JR; Hemler SL; Beschorner KE
    Footwear Sci; 2022; 14(3):219-228. PubMed ID: 37583564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
    Hemler SL; Charbonneau DN; Beschorner KE
    Tribol Int; 2020 May; 145():. PubMed ID: 32863531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
    Beschorner KE; Siegel JL; Hemler SL; Sundaram VH; Chanda A; Iraqi A; Haight JM; Redfern MS
    Appl Ergon; 2020 Oct; 88():103140. PubMed ID: 32678768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
    Hemler SL; Charbonneau DN; Iraqi A; Redfern MS; Haight JM; Moyer BE; Beschorner KE
    Appl Ergon; 2019 Oct; 80():35-42. PubMed ID: 31280808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Model of Shoe Wear Progression: Comparison with Experimental Results.
    Moghaddam SRM; Hemler SL; Redfern MS; Jacobs TD; Beschorner KE
    Wear; 2019 Mar; 422-423():235-241. PubMed ID: 37200982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
    Beschorner KE; Albert DL; Chambers AJ; Redfern MS
    J Biomech; 2014 Jan; 47(2):458-63. PubMed ID: 24267270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of coefficient of friction based on footwear outsole features.
    Iraqi A; Vidic NS; Redfern MS; Beschorner KE
    Appl Ergon; 2020 Jan; 82():102963. PubMed ID: 31580996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.
    Singh G; Beschorner KE
    IIE Trans Occup; 2014; 2(2):53-59. PubMed ID: 31106007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait kinetics impact shoe tread wear rate.
    Hemler SL; Sider JR; Redfern MS; Beschorner KE
    Gait Posture; 2021 May; 86():157-161. PubMed ID: 33735824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duration of slip-resistant shoe usage and the rate of slipping in limited-service restaurants: results from a prospective and crossover study.
    Verma SK; Zhao Z; Courtney TK; Chang WR; Lombardi DA; Huang YH; Brennan MJ; Perry MJ
    Ergonomics; 2014; 57(12):1919-26. PubMed ID: 25205136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces.
    Liu LW; Lee YH; Lin CJ; Li KW; Chen CY
    PLoS One; 2013; 8(7):e68989. PubMed ID: 23894388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validating the ability of a portable shoe-floor friction testing device, NextSTEPS, to predict human slips.
    Beschorner KE; Chanda A; Moyer BE; Reasinger A; Griffin SC; Johnston IM
    Appl Ergon; 2023 Jan; 106():103854. PubMed ID: 35973317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Influence of Spatiotemporal Gait Characteristics on Shoe Wear Rate.
    Griffin SC; Hemler SL; Beschorner KE
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):1-6. PubMed ID: 34781847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of tread patterns on slip resistance of footwear outsoles based on composite materials in icy conditions.
    Islam S; Gide K; Dutta T; Bagheri ZS
    J Safety Res; 2023 Dec; 87():453-464. PubMed ID: 38081717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.