These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37719703)

  • 21. Incorporation of Soil-Derived Covariates in Progeny Testing and Line Selection to Enhance Genomic Prediction Accuracy in Soybean Breeding.
    Canella Vieira C; Persa R; Chen P; Jarquin D
    Front Genet; 2022; 13():905824. PubMed ID: 36159995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors Using Gradient Boosting Frameworks.
    Westhues CC; Mahone GS; da Silva S; Thorwarth P; Schmidt M; Richter JC; Simianer H; Beissinger TM
    Front Plant Sci; 2021; 12():699589. PubMed ID: 34880880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-farm performance and farmers' participatory assessment of new stress-tolerant maize hybrids in Eastern Africa.
    Worku M; De Groote H; Munyua B; Makumbi D; Owino F; Crossa J; Beyene Y; Mugo S; Jumbo M; Asea G; Mutinda C; Kwemoi DB; Woyengo V; Olsen M; Prasanna BM
    Field Crops Res; 2020 Feb; 246():107693. PubMed ID: 32015590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pea Grain Protein Content Across Italian Environments: Genetic Relationship With Grain Yield, and Opportunities for Genome-Enabled Selection for Protein Yield.
    Crosta M; Nazzicari N; Ferrari B; Pecetti L; Russi L; Romani M; Cabassi G; Cavalli D; Marocco A; Annicchiarico P
    Front Plant Sci; 2021; 12():718713. PubMed ID: 35046967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic Dissection of Resistance to Gray Leaf Spot by Combining Genome-Wide Association, Linkage Mapping, and Genomic Prediction in Tropical Maize Germplasm.
    Kibe M; Nair SK; Das B; Bright JM; Makumbi D; Kinyua J; Suresh LM; Beyene Y; Olsen MS; Prasanna BM; Gowda M
    Front Plant Sci; 2020; 11():572027. PubMed ID: 33224163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing combining abilities, genomic data, and genotype × environment interactions to predict hybrid grain sorghum performance.
    Fonseca JMO; Klein PE; Crossa J; Pacheco A; Perez-Rodriguez P; Ramasamy P; Klein R; Rooney WL
    Plant Genome; 2021 Nov; 14(3):e20127. PubMed ID: 34370387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrating a growth degree-days based reaction norm methodology and multi-trait modeling for genomic prediction in wheat.
    Raffo MA; Sarup P; Andersen JR; Orabi J; Jahoor A; Jensen J
    Front Plant Sci; 2022; 13():939448. PubMed ID: 36119585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomes to Fields 2022 Maize genotype by Environment Prediction Competition.
    Lima DC; Washburn JD; Varela JI; Chen Q; Gage JL; Romay MC; Holland J; Ertl D; Lopez-Cruz M; Aguate FM; de Los Campos G; Kaeppler S; Beissinger T; Bohn M; Buckler E; Edwards J; Flint-Garcia S; Gore MA; Hirsch CN; Knoll JE; McKay J; Minyo R; Murray SC; Ortez OA; Schnable JC; Sekhon RS; Singh MP; Sparks EE; Thompson A; Tuinstra M; Wallace J; Weldekidan T; Xu W; de Leon N
    BMC Res Notes; 2023 Jul; 16(1):148. PubMed ID: 37461058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond Genomic Prediction: Combining Different Types of
    Schrag TA; Westhues M; Schipprack W; Seifert F; Thiemann A; Scholten S; Melchinger AE
    Genetics; 2018 Apr; 208(4):1373-1385. PubMed ID: 29363551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new strategy for using historical imbalanced yield data to conduct genome-wide association studies and develop genomic prediction models for wheat breeding.
    Chu C; Wang S; Rudd JC; Ibrahim AMH; Xue Q; Devkota RN; Baker JA; Baker S; Simoneaux B; Opena G; Dong H; Liu X; Jessup KE; Chen MS; Hui K; Metz R; Johnson CD; Zhang ZS; Liu S
    Mol Breed; 2022 Apr; 42(4):18. PubMed ID: 37309459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic Dissection of Grain Yield of Maize and Yield-Related Traits Through Association Mapping and Genomic Prediction.
    Ma J; Cao Y
    Front Plant Sci; 2021; 12():690059. PubMed ID: 34335658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased Predictive Accuracy of Multi-Environment Genomic Prediction Model for Yield and Related Traits in Spring Wheat (
    Tomar V; Singh D; Dhillon GS; Chung YS; Poland J; Singh RP; Joshi AK; Gautam Y; Tiwari BS; Kumar U
    Front Plant Sci; 2021; 12():720123. PubMed ID: 34691100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G × EBLUP: A novel method for exploring genotype by environment interactions and genomic prediction.
    Song H; Wang X; Guo Y; Ding X
    Front Genet; 2022; 13():972557. PubMed ID: 36171888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic architecture of maize kernel row number and whole genome prediction.
    Liu L; Du Y; Huo D; Wang M; Shen X; Yue B; Qiu F; Zheng Y; Yan J; Zhang Z
    Theor Appl Genet; 2015 Nov; 128(11):2243-54. PubMed ID: 26188589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide association studies of grain yield and quality traits under optimum and low-nitrogen stress in tropical maize (Zea mays L.).
    Ndlovu N; Spillane C; McKeown PC; Cairns JE; Das B; Gowda M
    Theor Appl Genet; 2022 Dec; 135(12):4351-4370. PubMed ID: 36131140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat.
    Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S
    G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increasing Genomic-Enabled Prediction Accuracy by Modeling Genotype × Environment Interactions in Kansas Wheat.
    Jarquín D; Lemes da Silva C; Gaynor RC; Poland J; Fritz A; Howard R; Battenfield S; Crossa J
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple-trait, random regression, and compound symmetry models for analyzing multi-environment trials in maize breeding.
    Ferreira Coelho I; Peixoto MA; Santana Pinto Coelho Evangelista J; Silva Alves R; Sales S; Resende MDV; Naves Pinto JF; Fialho Dos Reis E; Bhering LL
    PLoS One; 2020; 15(11):e0242705. PubMed ID: 33216796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic prediction of preliminary yield trials in chickpea: Effect of functional annotation of SNPs and environment.
    Li Y; Ruperao P; Batley J; Edwards D; Martin W; Hobson K; Sutton T
    Plant Genome; 2022 Mar; 15(1):e20166. PubMed ID: 34786880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid Wheat Prediction Using Genomic, Pedigree, and Environmental Covariables Interaction Models.
    Basnet BR; Crossa J; Dreisigacker S; Pérez-Rodríguez P; Manes Y; Singh RP; Rosyara UR; Camarillo-Castillo F; Murua M
    Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.