BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37719877)

  • 1. Cytosine base editors optimized for genome editing in potato protoplasts.
    Westberg I; Carlsen FM; Johansen IE; Petersen BL
    Front Genome Ed; 2023; 5():1247702. PubMed ID: 37719877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved plant cytosine base editors with high editing activity, purity, and specificity.
    Ren Q; Sretenovic S; Liu G; Zhong Z; Wang J; Huang L; Tang X; Guo Y; Liu L; Wu Y; Zhou J; Zhao Y; Yang H; He Y; Liu S; Yin D; Mayorga R; Zheng X; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2021 Oct; 19(10):2052-2068. PubMed ID: 34042262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosine base editors (CBEs) for inducing targeted DNA base editing in Nicotiana benthamiana.
    Luo J; Abid M; Tu J; Cai X; Zhang Y; Gao P; Huang H
    BMC Plant Biol; 2023 Jun; 23(1):305. PubMed ID: 37286962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing Cytosine Base Editing Scope and Efficiency With Engineered Cas9-PmCDA1 Fusions and the Modified sgRNA in Rice.
    Wu Y; Xu W; Wang F; Zhao S; Feng F; Song J; Zhang C; Yang J
    Front Genet; 2019; 10():379. PubMed ID: 31134125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficacy of CRISPR-mediated cytosine base editing with the RPS5a promoter in Arabidopsis thaliana.
    Choi M; Yun JY; Kim JH; Kim JS; Kim ST
    Sci Rep; 2021 Apr; 11(1):8087. PubMed ID: 33850267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgene-Free Genome Editing in Tomato and Potato Plants Using
    Veillet F; Perrot L; Chauvin L; Kermarrec MP; Guyon-Debast A; Chauvin JE; Nogué F; Mazier M
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered CBEs based on Macaca fascicularis A3A with improved properties for precise genome editing.
    Ren CY; Liu YS; He YS; Zhang LP; Rao JH; Rao Y; Chen JH
    Cell Rep; 2024 Mar; 43(3):113878. PubMed ID: 38431844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system.
    Qin L; Li J; Wang Q; Xu Z; Sun L; Alariqi M; Manghwar H; Wang G; Li B; Ding X; Rui H; Huang H; Lu T; Lindsey K; Daniell H; Zhang X; Jin S
    Plant Biotechnol J; 2020 Jan; 18(1):45-56. PubMed ID: 31116473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato.
    Veillet F; Chauvin L; Kermarrec MP; Sevestre F; Merrer M; Terret Z; Szydlowski N; Devaux P; Gallois JL; Chauvin JE
    Plant Cell Rep; 2019 Sep; 38(9):1065-1080. PubMed ID: 31101972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 11. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato.
    Johansen IE; Liu Y; Jørgensen B; Bennett EP; Andreasson E; Nielsen KL; Blennow A; Petersen BL
    Sci Rep; 2019 Nov; 9(1):17715. PubMed ID: 31776399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications
    Wu S; Li L; Li M; Sun S; Zhao Y; Xue X; Chen F; Zhong J; Guo J; Qu Q; Wang X; Liu Z; Qiao Y
    Front Cell Dev Biol; 2022; 10():809922. PubMed ID: 35300420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and optimization of a base editor based on the MS2 system.
    Zhang S; Feng S; Jiang W; Huang X; Chen J
    Animal Model Exp Med; 2019 Sep; 2(3):185-190. PubMed ID: 31773094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A split cytosine deaminase architecture enables robust inducible base editing.
    Long J; Liu N; Tang W; Xie L; Qin F; Zhou L; Tao R; Wang Y; Hu Y; Jiao Y; Li L; Jiang L; Qu J; Chen Q; Yao S
    FASEB J; 2021 Dec; 35(12):e22045. PubMed ID: 34797942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria.
    Li C; Wang L; Cseke LJ; Vasconcelos F; Huguet-Tapia JC; Gassmann W; Pauwels L; White FF; Dong H; Yang B
    Commun Biol; 2023 Jan; 6(1):56. PubMed ID: 36646768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells.
    Ye L; Zhao D; Li J; Wang Y; Li B; Yang Y; Hou X; Wang H; Wei Z; Liu X; Li Y; Li S; Liu Y; Zhang X; Bi C
    Nat Biotechnol; 2024 Jan; ():. PubMed ID: 38168994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of base editors with anti-deaminases derived from viruses.
    Liu Z; Chen S; Lai L; Li Z
    Nat Commun; 2022 Feb; 13(1):597. PubMed ID: 35105899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.