These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37720016)

  • 21. The effect of background strain on the behavioral phenotypes of the MDGA2
    Fertan E; Wong AA; Purdon MK; Weaver ICG; Brown RE
    Genes Brain Behav; 2021 Mar; 20(3):e12696. PubMed ID: 32808443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of Cajal-Retzius neurons.
    Takeuchi A; Hamasaki T; Litwack ED; O'Leary DD
    Cereb Cortex; 2007 Jul; 17(7):1531-41. PubMed ID: 16959869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MDGA1-deficiency attenuates prepulse inhibition with alterations of dopamine and serotonin metabolism: An ex vivo HPLC-ECD analysis.
    Hossain MR; Jamal M; Tanoue Y; Ojima D; Takahashi H; Kubota T; Ansary TM; Ito A; Tanaka N; Kinoshita H; Kishimoto Y; Yamamoto T
    Neurosci Lett; 2020 Jan; 716():134677. PubMed ID: 31812551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MDGA2 is a novel tumour suppressor cooperating with DMAP1 in gastric cancer and is associated with disease outcome.
    Wang K; Liang Q; Li X; Tsoi H; Zhang J; Wang H; Go MY; Chiu PW; Ng EK; Sung JJ; Yu J
    Gut; 2016 Oct; 65(10):1619-31. PubMed ID: 26206665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1.
    Rudan Njavro J; Klotz J; Dislich B; Wanngren J; Shmueli MD; Herber J; Kuhn PH; Kumar R; Koeglsperger T; Conrad M; Wurst W; Feederle R; Vlachos A; Michalakis S; Jedlicka P; Müller SA; Lichtenthaler SF
    FASEB J; 2020 Feb; 34(2):2465-2482. PubMed ID: 31908000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deletion of
    Bhouri M; Morishita W; Temkin P; Goswami D; Kawabe H; Brose N; Südhof TC; Craig AM; Siddiqui TJ; Malenka R
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5382-E5389. PubMed ID: 29784826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A negative regulator of synaptic development: MDGA and its links to neurodevelopmental disorders.
    Wang R; Dong JX; Wang L; Dong XY; Anenberg E; Jiang PF; Zeng LH; Xie YC
    World J Pediatr; 2019 Oct; 15(5):415-421. PubMed ID: 30997654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SPARCL1 Promotes Excitatory But Not Inhibitory Synapse Formation and Function Independent of Neurexins and Neuroligins.
    Gan KJ; Südhof TC
    J Neurosci; 2020 Oct; 40(42):8088-8102. PubMed ID: 32973045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective regulation of GluA subunit synthesis and AMPA receptor-mediated synaptic function and plasticity by the translation repressor 4E-BP2 in hippocampal pyramidal cells.
    Ran I; Gkogkas CG; Vasuta C; Tartas M; Khoutorsky A; Laplante I; Parsyan A; Nevarko T; Sonenberg N; Lacaille JC
    J Neurosci; 2013 Jan; 33(5):1872-86. PubMed ID: 23365227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties.
    Chanda S; Hale WD; Zhang B; Wernig M; Südhof TC
    J Neurosci; 2017 Jul; 37(29):6816-6836. PubMed ID: 28607166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lrfn2-Mutant Mice Display Suppressed Synaptic Plasticity and Inhibitory Synapse Development and Abnormal Social Communication and Startle Response.
    Li Y; Kim R; Cho YS; Song WS; Kim D; Kim K; Roh JD; Chung C; Park H; Yang E; Kim SJ; Ko J; Kim H; Kim MH; Bae YC; Kim E
    J Neurosci; 2018 Jun; 38(26):5872-5887. PubMed ID: 29798891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alteration of GABAergic Input Precedes Neurodegeneration of Cerebellar Purkinje Cells of NPC1-Deficient Mice.
    Rabenstein M; Murr N; Hermann A; Rolfs A; Frech MJ
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31847086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo.
    Soler-Llavina GJ; Fuccillo MV; Ko J; Südhof TC; Malenka RC
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16502-9. PubMed ID: 21953696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective control of inhibitory synapse development by Slitrk3-PTPδ trans-synaptic interaction.
    Takahashi H; Katayama K; Sohya K; Miyamoto H; Prasad T; Matsumoto Y; Ota M; Yasuda H; Tsumoto T; Aruga J; Craig AM
    Nat Neurosci; 2012 Jan; 15(3):389-98, S1-2. PubMed ID: 22286174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors.
    Wei M; Zhang J; Jia M; Yang C; Pan Y; Li S; Luo Y; Zheng J; Ji J; Chen J; Hu X; Xiong J; Shi Y; Zhang C
    Proc Natl Acad Sci U S A; 2016 May; 113(19):E2695-704. PubMed ID: 27114538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses.
    Lee SJ; Wei M; Zhang C; Maxeiner S; Pak C; Calado Botelho S; Trotter J; Sterky FH; Südhof TC
    J Neurosci; 2017 Feb; 37(5):1062-1080. PubMed ID: 27986928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conserved contributions of NMDA receptor subtypes to synaptic responses in lamina II spinal neurons across early postnatal development.
    Mahmoud H; Martin N; Hildebrand ME
    Mol Brain; 2020 Mar; 13(1):31. PubMed ID: 32138769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity.
    Wheal HV; Chen Y; Mitchell J; Schachner M; Maerz W; Wieland H; Van Rossum D; Kirsch J
    Prog Neurobiol; 1998 Aug; 55(6):611-40. PubMed ID: 9670221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome.
    Medrihan L; Tantalaki E; Aramuni G; Sargsyan V; Dudanova I; Missler M; Zhang W
    J Neurophysiol; 2008 Jan; 99(1):112-21. PubMed ID: 18032561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission.
    Ho A; Morishita W; Hammer RE; Malenka RC; Sudhof TC
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):1409-14. PubMed ID: 12547917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.