BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 37720106)

  • 1. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset.
    Rose KP; Manilla G; Milon B; Zalzman O; Song Y; Coate TM; Hertzano R
    iScience; 2023 Oct; 26(10):107769. PubMed ID: 37720106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes.
    Trowe MO; Maier H; Schweizer M; Kispert A
    Development; 2008 May; 135(9):1725-34. PubMed ID: 18353863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pou3f4 deficiency causes defects in otic fibrocytes and stria vascularis by different mechanisms.
    Song MH; Choi SY; Wu L; Oh SK; Lee HK; Lee DJ; Shim DB; Choi JY; Kim UK; Bok J
    Biochem Biophys Res Commun; 2011 Jan; 404(1):528-33. PubMed ID: 21144821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and localization of COL2A1 mRNA and type II collagen in human fetal cochlea.
    Khetarpal U; Robertson NG; Yoo TJ; Morton CC
    Hear Res; 1994 Sep; 79(1-2):59-73. PubMed ID: 7806485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H; Higashi-Shingai K; Fujita A; Iwai K; Ishii M; Kurachi Y
    Eur J Neurosci; 2004 Jan; 19(1):76-84. PubMed ID: 14750965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear Fibrocyte and Osteoblast Lineages Expressing Type 2 Deiodinase Identified with a Dio2CreERt2 Allele.
    Ng L; Liu Y; Liu H; Forrest D
    Endocrinology; 2021 Dec; 162(12):. PubMed ID: 34436572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of cochlear spiral ligament fibrocytes of the common marmoset, a nonhuman model animal.
    Hosoya M; Iwabu K; Kitama T; Nishiyama T; Oishi N; Okano H; Ozawa H
    Sci Rep; 2023 Jul; 13(1):11789. PubMed ID: 37479821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heptanol application to the mouse round window: a model for studying cochlear lateral wall regeneration.
    Stevens SM; Xing Y; Hensley CT; Zhu J; Dubno JR; Lang H
    Otolaryngol Head Neck Surg; 2014 Apr; 150(4):659-65. PubMed ID: 24436465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear.
    Phippard D; Lu L; Lee D; Saunders JC; Crenshaw EB
    J Neurosci; 1999 Jul; 19(14):5980-9. PubMed ID: 10407036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of mRNA encoding extracellular matrix glycoproteins SPARC and SC1 is temporally and spatially regulated in the developing cochlea of the rat inner ear.
    Mothe AJ; Brown IR
    Hear Res; 2001 May; 155(1-2):161-74. PubMed ID: 11335086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-architectures of the osseous spiral laminae and spiral limbus in the mouse cochlea: a scanning electron microscopic study on the morphological basis of the auditory mechanics.
    Kücük B
    Hokkaido Igaku Zasshi; 1990 Nov; 65(6):612-27. PubMed ID: 2265821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The postnatal development of F-actin in tension fibroblasts of the spiral ligament of the gerbil cochlea.
    Kuhn B; Vater M
    Hear Res; 1997 Jun; 108(1-2):180-90. PubMed ID: 9213130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear.
    Bohnenpoll T; Trowe MO; Wojahn I; Taketo MM; Petry M; Kispert A
    Dev Biol; 2014 Jul; 391(1):54-65. PubMed ID: 24727668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Possibilities for residual hearing preservation with Nucleus CI532 Slim Modiolar electrode array. Case report].
    Nagy R; Jarabin JA; Dimák B; Perényi Á; Tóth F; Szűts V; Jóri J; Kiss JG; Rovó L
    Orv Hetil; 2018 Oct; 159(41):1680-1688. PubMed ID: 30295044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical and Immunohistochemical Properties of Cochlear Fibrocytes in 3D Cell Culture and in the Excised Spiral Ligament of Mice.
    Osborn A; Caruana D; Furness DN; Evans MG
    J Assoc Res Otolaryngol; 2022 Apr; 23(2):183-193. PubMed ID: 35041102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of cochlear implant electrode array designs.
    Dhanasingh A; Jolly C
    Hear Res; 2017 Dec; 356():93-103. PubMed ID: 29102129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-lasting changes in the cochlear K+ recycling structures after acute energy failure.
    Takiguchi Y; Sun GW; Ogawa K; Matsunaga T
    Neurosci Res; 2013; 77(1-2):33-41. PubMed ID: 23827367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear development: hair cells don their wigs and get wired.
    Whitlon DS
    Curr Opin Otolaryngol Head Neck Surg; 2004 Oct; 12(5):449-54. PubMed ID: 15377960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Sox9 in the periotic mesenchyme affects mesenchymal expansion and differentiation, and epithelial morphogenesis during cochlea development in the mouse.
    Trowe MO; Shah S; Petry M; Airik R; Schuster-Gossler K; Kist R; Kispert A
    Dev Biol; 2010 Jun; 342(1):51-62. PubMed ID: 20346939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibro-vascular coupling in the control of cochlear blood flow.
    Dai M; Shi X
    PLoS One; 2011; 6(6):e20652. PubMed ID: 21673815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.