BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 37720106)

  • 21. Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea.
    Sharlin DS; Visser TJ; Forrest D
    Endocrinology; 2011 Dec; 152(12):5053-64. PubMed ID: 21878515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell transcriptomic profiling of the mouse cochlea: An atlas for targeted therapies.
    Jean P; Wong Jun Tai F; Singh-Estivalet A; Lelli A; Scandola C; Megharba S; Schmutz S; Roux S; Mechaussier S; Sudres M; Mouly E; Heritier AV; Bonnet C; Mallet A; Novault S; Libri V; Petit C; Michalski N
    Proc Natl Acad Sci U S A; 2023 Jun; 120(26):e2221744120. PubMed ID: 37339214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca
    Sherrill HE; Jean P; Driver EC; Sanders TR; Fitzgerald TS; Moser T; Kelley MW
    J Neurosci; 2019 Jul; 39(27):5284-5298. PubMed ID: 31085606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postnatal developmental expression of the PDZ scaffolds Na+ -H+ exchanger regulatory factors 1 and 2 in the rat cochlea.
    Kanjhan R; Hryciw DH; Yun CC; Bellingham MC; Poronnik P
    Cell Tissue Res; 2006 Jan; 323(1):53-70. PubMed ID: 16160858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of gap junctional intercellular communication within the lateral wall of the rat cochlea.
    Kelly JJ; Forge A; Jagger DJ
    Neuroscience; 2011 Apr; 180():360-9. PubMed ID: 21320575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EBF1 Limits the Numbers of Cochlear Hair and Supporting Cells and Forms the Scala Tympani and Spiral Limbus during Inner Ear Development.
    Kagoshima H; Ohnishi H; Yamamoto R; Yasumoto A; Tona Y; Nakagawa T; Omori K; Yamamoto N
    J Neurosci; 2024 Feb; 44(7):. PubMed ID: 38176908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space.
    Babola TA; Kersbergen CJ; Wang HC; Bergles DE
    Elife; 2020 Jan; 9():. PubMed ID: 31913121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium-Sensing Receptor Is Functionally Expressed in the Cochlear Perilymphatic Compartment and Essential for Hearing.
    Minakata T; Inagaki A; Yamamura A; Yamamura H; Sekiya S; Murakami S
    Front Mol Neurosci; 2019; 12():175. PubMed ID: 31379498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gap junction systems in the mammalian cochlea.
    Kikuchi T; Kimura RS; Paul DL; Takasaka T; Adams JC
    Brain Res Brain Res Rev; 2000 Apr; 32(1):163-6. PubMed ID: 10751665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pou3f4-expressing otic mesenchyme cells promote spiral ganglion neuron survival in the postnatal mouse cochlea.
    Brooks PM; Rose KP; MacRae ML; Rangoussis KM; Gurjar M; Hertzano R; Coate TM
    J Comp Neurol; 2020 Aug; 528(12):1967-1985. PubMed ID: 31994726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation.
    Nadol JB
    Otolaryngol Head Neck Surg; 1997 Sep; 117(3 Pt 1):220-8. PubMed ID: 9334769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contractility in type III cochlear fibrocytes is dependent on non-muscle myosin II and intercellular gap junctional coupling.
    Kelly JJ; Forge A; Jagger DJ
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):473-84. PubMed ID: 22476723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium signaling in interdental cells during the critical developmental period of the mouse cochlea.
    Schade-Mann T; Münkner S; Eckrich T; Engel J
    Hear Res; 2020 Apr; 389():107913. PubMed ID: 32120242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The development of vestibulocochlear efferents and cochlear afferents in mice.
    Bruce LL; Kingsley J; Nichols DH; Fritzsch B
    Int J Dev Neurosci; 1997 Jul; 15(4-5):671-92. PubMed ID: 9263042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone Marrow Stromal Cells Accelerate Hearing Recovery via Regeneration or Maintenance of Cochlear Fibrocytes in Mouse Spiral Ligaments.
    Kada S; Hamaguchi K; Ito J; Omori K; Nakagawa T
    Anat Rec (Hoboken); 2020 Mar; 303(3):478-486. PubMed ID: 30632312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental expression of high-mobility group box 1 (HMGB1) in the mouse cochlea.
    Liu W; Ming S; Zhao X; Zhu X; Gong Y
    Eur J Histochem; 2023 Sep; 67(3):. PubMed ID: 37667832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of the expression of the glutamate-aspartate transporter and identification of functional glutamate uptake reveal a role for cochlear fibrocytes in glutamate homeostasis.
    Furness DN; Lawton DM; Mahendrasingam S; Hodierne L; Jagger DJ
    Neuroscience; 2009 Sep; 162(4):1307-21. PubMed ID: 19464351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential.
    Shibata T; Hibino H; Doi K; Suzuki T; Hisa Y; Kurachi Y
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C1038-48. PubMed ID: 16822945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.