BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 37720106)

  • 41. Diverse identities and sites of action of cochlear neurotransmitters.
    Kitcher SR; Pederson AM; Weisz CJC
    Hear Res; 2022 Jun; 419():108278. PubMed ID: 34108087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of calpain in 4-hydroxynonenal-induced disruption of gap junction-mediated intercellular communication among fibrocytes in primary cultures derived from the cochlear spiral ligament.
    Yamaguchi T; Yoneyama M; Hinoi E; Ogita K
    J Pharmacol Sci; 2015 Oct; 129(2):127-34. PubMed ID: 26499182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical Determinants of Tinnitus Extinction in a Cochlear Implant Patient.
    Muller L; Gilbert M; Jiam NT; Limb CJ; Tward AD
    Otol Neurotol; 2023 Jan; 44(1):e8-e12. PubMed ID: 36509436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of the carrier protein apolipoprotein D in the mouse inner ear.
    Hildebrand MS; de Silva MG; Klockars T; Solares CA; Hirose K; Smith JD; Patel SC; Dahl HH
    Hear Res; 2005 Feb; 200(1-2):102-14. PubMed ID: 15668042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracochlear Electrocochleography: Response Patterns During Cochlear Implantation and Hearing Preservation.
    Giardina CK; Brown KD; Adunka OF; Buchman CA; Hutson KA; Pillsbury HC; Fitzpatrick DC
    Ear Hear; 2019; 40(4):833-848. PubMed ID: 30335669
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea.
    Tsuprun V; Santi P
    Hear Res; 1999 Mar; 129(1-2):35-49. PubMed ID: 10190750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset.
    Jensen-Smith H; Hallworth R
    Cell Motil Cytoskeleton; 2007 Sep; 64(9):705-17. PubMed ID: 17615570
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative immunohistochemical localizations of aquaporin-1 and aquaporin-4 in the cochleae of three different species of rodents.
    Miyabe Y; Kikuchi T; Kobayashi T
    Tohoku J Exp Med; 2002 Apr; 196(4):247-57. PubMed ID: 12086153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular correlates of progressive hearing loss in 129S6/SvEv mice.
    Ohlemiller KK; Gagnon PM
    J Comp Neurol; 2004 Feb; 469(3):377-90. PubMed ID: 14730589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning.
    Balendran V; Skidmore JM; Ritter KE; Gao J; Cimerman J; Beyer LA; Hurd EA; Raphael Y; Martin DM
    Dev Biol; 2021 Sep; 477():11-21. PubMed ID: 34004180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photobiomodulation with a wavelength > 800 nm induces morphological changes in stem cells within otic organoids and scala media of the cochlea.
    Chang SY; Lee MY
    Lasers Med Sci; 2021 Dec; 36(9):1917-1925. PubMed ID: 33604771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cochlear implantation in patients with otosclerosis of the otic capsule.
    Burmeister J; Rathgeb S; Herzog J
    Am J Otolaryngol; 2017; 38(5):556-559. PubMed ID: 28549773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling.
    Scherer EQ; Yang J; Canis M; Reimann K; Ivanov K; Diehl CD; Backx PH; Wier WG; Strieth S; Wangemann P; Voigtlaender-Bolz J; Lidington D; Bolz SS
    Stroke; 2010 Nov; 41(11):2618-24. PubMed ID: 20930159
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustic overstimulation-induced apoptosis in fibrocytes of the cochlear spiral limbus of mice.
    Cui Y; Sun GW; Yamashita D; Kanzaki S; Matsunaga T; Fujii M; Kaga K; Ogawa K
    Eur Arch Otorhinolaryngol; 2011 Jul; 268(7):973-8. PubMed ID: 21246212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Outer hair cell active force generation in the cochlear environment.
    Liao Z; Feng S; Popel AS; Brownell WE; Spector AA
    J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea.
    Reimann K; Krishnamoorthy G; Wier WG; Wangemann P
    PLoS One; 2011; 6(9):e25659. PubMed ID: 21980520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochlea.
    Nikolic P; Housley GD; Luo L; Ryan AF; Thorne PR
    Brain Res Dev Brain Res; 2001 Feb; 126(2):173-82. PubMed ID: 11248351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture.
    Perny M; Ting CC; Kleinlogel S; Senn P; Roccio M
    Front Cell Neurosci; 2017; 11():409. PubMed ID: 29311837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission.
    Tchumatchenko T; Reichenbach T
    Nat Commun; 2014 Jun; 5():4160. PubMed ID: 24954736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea.
    Oishi N; Chen FQ; Zheng HW; Sha SH
    Hear Res; 2013 Feb; 296():36-41. PubMed ID: 23183031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.