BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 37720106)

  • 61. A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission.
    Tchumatchenko T; Reichenbach T
    Nat Commun; 2014 Jun; 5():4160. PubMed ID: 24954736
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture.
    Perny M; Ting CC; Kleinlogel S; Senn P; Roccio M
    Front Cell Neurosci; 2017; 11():409. PubMed ID: 29311837
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea.
    Oishi N; Chen FQ; Zheng HW; Sha SH
    Hear Res; 2013 Feb; 296():36-41. PubMed ID: 23183031
    [TBL] [Abstract][Full Text] [Related]  

  • 64. On the Role of Fibrocytes and the Extracellular Matrix in the Physiology and Pathophysiology of the Spiral Ligament.
    Peeleman N; Verdoodt D; Ponsaerts P; Van Rompaey V
    Front Neurol; 2020; 11():580639. PubMed ID: 33193034
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell-specific accumulation patterns of gentamicin in the guinea pig cochlea.
    Heinrich UR; Schmidtmann I; Strieth S; Helling K
    Hear Res; 2015 Aug; 326():40-8. PubMed ID: 25882166
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Expression and function of pannexins in the inner ear and hearing.
    Zhao HB
    BMC Cell Biol; 2016 May; 17 Suppl 1(Suppl 1):16. PubMed ID: 27229462
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neurogenic regulation of cochlear blood flow occurs along the basilar artery, the anterior inferior cerebellar artery and at branch points of the spiral modiolar artery.
    Wangemann P; Wonneberger K
    Hear Res; 2005 Nov; 209(1-2):91-6. PubMed ID: 16054311
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tight modiolar proximity and feasibility of slim modiolar cochlear implant electrode array insertion in diverse etiologies of hearing loss.
    Kim Y; Kim Y; Kim YS; Lee SY; Choi BY
    Eur Arch Otorhinolaryngol; 2022 Aug; 279(8):3899-3909. PubMed ID: 34718854
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs.
    van der Valk WH; van Beelen ESA; Steinhart MR; Nist-Lund C; Osorio D; de Groot JCMJ; Sun L; van Benthem PPG; Koehler KR; Locher H
    Cell Rep; 2023 Jun; 42(6):112623. PubMed ID: 37289589
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrical impedance measurements of cochlear structures using the four-electrode reflection-coefficient technique.
    Kumar G; Chokshi M; Richter CP
    Hear Res; 2010 Jan; 259(1-2):86-94. PubMed ID: 19857561
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spontaneous recovery of cochlear fibrocytes after severe degeneration caused by acute energy failure.
    Mizutari K
    Front Pharmacol; 2014; 5():198. PubMed ID: 25206337
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Forgotten Fibrocytes: A Neglected, Supporting Cell Type of the Cochlea With the Potential to be an Alternative Therapeutic Target in Hearing Loss.
    Furness DN
    Front Cell Neurosci; 2019; 13():532. PubMed ID: 31866825
    [TBL] [Abstract][Full Text] [Related]  

  • 73. ZBTB20 is essential for cochlear maturation and hearing in mice.
    Xie Z; Ma XH; Bai QF; Tang J; Sun JH; Jiang F; Guo W; Wang CM; Yang R; Wen YC; Wang FY; Chen YX; Zhang H; He DZ; Kelley MW; Yang S; Zhang WJ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(24):e2220867120. PubMed ID: 37279265
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration.
    Garadat SN; Colesa DJ; Swiderski DL; Raphael Y; Pfingst BE
    Hear Res; 2022 Feb; 414():108404. PubMed ID: 34883366
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity.
    Yao W; Zhao Z; Wang J; Duan M
    Comput Biol Med; 2021 Sep; 136():104756. PubMed ID: 34388464
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Expression and distribution of creatine transporter and creatine kinase (brain isoform) in developing and mature rat cochlear tissues.
    Wong AC; Velamoor S; Skelton MR; Thorne PR; Vlajkovic SM
    Histochem Cell Biol; 2012 May; 137(5):599-613. PubMed ID: 22307408
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing.
    Hickman TT; Liberman MC; Jacob MH
    J Neurosci; 2015 Jun; 35(24):9236-45. PubMed ID: 26085645
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Analysis of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1986; 22():155-69. PubMed ID: 3733537
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Caspase inhibitor facilitates recovery of hearing by protecting the cochlear lateral wall from acute cochlear mitochondrial dysfunction.
    Mizutari K; Matsunaga T; Kamiya K; Fujinami Y; Fujii M; Ogawa K
    J Neurosci Res; 2008 Jan; 86(1):215-22. PubMed ID: 17722114
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The expression of PTEN in the development of mouse cochlear lateral wall.
    Dong Y; Sui L; Yamaguchi F; Kamitori K; Hirata Y; Hossain A; Noguchi C; Katagi A; Nishio M; Suzuki A; Lou X; Tokuda M
    Neuroscience; 2014 Jan; 258():263-9. PubMed ID: 24252318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.