These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37720190)

  • 21. Interobserver reliability of laser speckle contrast imaging in the assessment of burns.
    Mirdell R; Farnebo S; Sjöberg F; Tesselaar E
    Burns; 2019 Sep; 45(6):1325-1335. PubMed ID: 31230800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motion-contrast laser speckle imaging of microcirculation within tissue beds in vivo.
    Liu R; Qin J; Wang RK
    J Biomed Opt; 2013 Jun; 18(6):060508. PubMed ID: 23804163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers.
    Ramirez-San-Juan JC; Regan C; Coyotl-Ocelotl B; Choi B
    J Biomed Opt; 2014; 19(10):106009. PubMed ID: 25334006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A laser speckle imaging technique for measuring tissue perfusion.
    Forrester KR; Tulip J; Leonard C; Stewart C; Bray RC
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2074-84. PubMed ID: 15536909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis.
    Bricq S; Mahé G; Rousseau D; Humeau-Heurtier A; Chapeau-Blondeau F; Varela JR; Abraham P
    Med Biol Eng Comput; 2012 Oct; 50(10):1017-23. PubMed ID: 22644256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone.
    Remer I; Bilenca A
    J Biophotonics; 2015 Nov; 8(11-12):902-7. PubMed ID: 25908015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization.
    Kikuchi S; Miyake K; Tada Y; Uchida D; Koya A; Saito Y; Ohura T; Azuma N
    Vascular; 2019 Jun; 27(3):242-251. PubMed ID: 30419804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Choosing a laser for laser speckle contrast imaging.
    Postnov DD; Cheng X; Erdener SE; Boas DA
    Sci Rep; 2019 Feb; 9(1):2542. PubMed ID: 30796288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation.
    Zötterman J; Mirdell R; Horsten S; Farnebo S; Tesselaar E
    PLoS One; 2017; 12(3):e0174703. PubMed ID: 28358906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager.
    Ragol S; Remer I; Shoham Y; Hazan S; Willenz U; Sinelnikov I; Dronov V; Rosenberg L; Bilenca A
    J Biomed Opt; 2015 Aug; 20(8):86009. PubMed ID: 26271055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Portable laser speckle perfusion imaging system based on digital signal processor.
    Tang X; Feng N; Sun X; Li P; Luo Q
    Rev Sci Instrum; 2010 Dec; 81(12):125110. PubMed ID: 21198054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the estimation of flow speed for laser speckle imaging with single exposure time.
    Wang Y; Wen D; Chen X; Huang Q; Chen M; Lu J; Li P
    Opt Lett; 2017 Jan; 42(1):57-60. PubMed ID: 28059177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of a non-invasive imaging photoplethysmography device to assess plantar skin perfusion, a comparison with laser speckle contrast analysis.
    Allan D; Chockalingam N; Naemi R
    J Med Eng Technol; 2021 Apr; 45(3):170-176. PubMed ID: 33750251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.
    Rice TB; Kwan E; Hayakawa CK; Durkin AJ; Choi B; Tromberg BJ
    Biomed Opt Express; 2013; 4(12):2880-92. PubMed ID: 24409388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-wavelength, handheld laser speckle imaging for skin evaluation.
    Zieger M; Kaatz M; Springer S; Riesenberg R; Wuttig A; Kanka M; Stanca S; Reble C; Khazaka G; Sieg R; De Gregorio M; Sattler M; Fischer F
    Skin Res Technol; 2021 Jul; 27(4):486-493. PubMed ID: 33231349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood Perfusion of Random Skin Flaps in Humans-In Vivo Assessment by Laser Speckle Contrast Imaging.
    Carvalho Brinca AM; de Castro Pinho A; Costa Vieira RJD
    Dermatol Surg; 2021 Nov; 47(11):1421-1426. PubMed ID: 34313635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using blood flow pulsatility to improve the accuracy of laser speckle contrast imaging in the assessment of burns.
    Mirdell R; Farnebo S; Sjöberg F; Tesselaar E
    Burns; 2020 Sep; 46(6):1398-1406. PubMed ID: 32299641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of motion artifacts caused by translation in handheld laser speckle contrast imaging.
    Chizari A; Tsong W; Knop T; Steenbergen W
    J Biomed Opt; 2023 Apr; 28(4):046005. PubMed ID: 37082096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser speckle contrast imaging of the skin: interest in processing the perfusion data.
    Humeau-Heurtier A; Buard B; Mahe G; Abraham P
    Med Biol Eng Comput; 2012 Feb; 50(2):103-5. PubMed ID: 22205575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating multi-exposure speckle imaging estimates of absolute autocorrelation times.
    Kazmi SM; Wu RK; Dunn AK
    Opt Lett; 2015 Aug; 40(15):3643-6. PubMed ID: 26258378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.