BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 37720244)

  • 1. Forward variable selection for random forest models.
    Velthoen J; Cai JJ; Jongbloed G
    J Appl Stat; 2023; 50(13):2836-2856. PubMed ID: 37720244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable selection for partially linear models via Bayesian subset modeling with diffusing prior.
    Wang J; Cai X; Li R
    J Multivar Anal; 2021 May; 183():. PubMed ID: 33867594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction.
    Staerk C; Mayr A
    BMC Bioinformatics; 2021 Sep; 22(1):441. PubMed ID: 34530737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward regression for Cox models with high-dimensional covariates.
    Hong HG; Zheng Q; Li Y
    J Multivar Anal; 2019 Sep; 173():268-290. PubMed ID: 31007300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purposeful selection of variables in logistic regression.
    Bursac Z; Gauss CH; Williams DK; Hosmer DW
    Source Code Biol Med; 2008 Dec; 3():17. PubMed ID: 19087314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method.
    Jiang F; Kutia M; Sarkissian AJ; Lin H; Long J; Sun H; Wang G
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power, selection bias and predictive performance of the Population Pharmacokinetic Covariate Model.
    Ribbing J; Jonsson EN
    J Pharmacokinet Pharmacodyn; 2004 Apr; 31(2):109-34. PubMed ID: 15379381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbiased split variable selection for random survival forests using maximally selected rank statistics.
    Wright MN; Dankowski T; Ziegler A
    Stat Med; 2017 Apr; 36(8):1272-1284. PubMed ID: 28088842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random forests for feature selection in QSPR Models - an application for predicting standard enthalpy of formation of hydrocarbons.
    Teixeira AL; Leal JP; Falcao AO
    J Cheminform; 2013 Feb; 5(1):9. PubMed ID: 23399299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation based method for assessing the statistical significance of logistic regression models after common variable selection procedures.
    Grogan TR; Elashoff DA
    Commun Stat Simul Comput; 2017; 46(9):7180-7193. PubMed ID: 29225408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward Stagewise Shrinkage and Addition for High Dimensional Censored Regression.
    Guo Z; Lu W; Li L
    Stat Biosci; 2015 Oct; 7(2):225-244. PubMed ID: 26904152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO.
    Zhu XW; Xin YJ; Ge HL
    J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block Forests: random forests for blocks of clinical and omics covariate data.
    Hornung R; Wright MN
    BMC Bioinformatics; 2019 Jun; 20(1):358. PubMed ID: 31248362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient test-based variable selection for high-dimensional linear models.
    Gong S; Zhang K; Liu Y
    J Multivar Anal; 2018 Jul; 166():17-31. PubMed ID: 30613114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. r2VIM: A new variable selection method for random forests in genome-wide association studies.
    Szymczak S; Holzinger E; Dasgupta A; Malley JD; Molloy AM; Mills JL; Brody LC; Stambolian D; Bailey-Wilson JE
    BioData Min; 2016; 9():7. PubMed ID: 26839594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection Consistency of Lasso-Based Procedures for Misspecified High-Dimensional Binary Model and Random Regressors.
    Kubkowski M; Mielniczuk J
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of variable selection methods for random forests and omics data sets.
    Degenhardt F; Seifert S; Szymczak S
    Brief Bioinform; 2019 Mar; 20(2):492-503. PubMed ID: 29045534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.