These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37720786)

  • 1. Design and Performance Comparison of Polymer-Derived Ceramic Ambigels and Aerogels.
    Icin O; Semerci T; Soraru GD; Vakifahmetoglu C
    ACS Omega; 2023 Sep; 8(36):32955-32962. PubMed ID: 37720786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Characterization of High Surface Area Transparent SiOC Aerogels from Hybrid Silicon Alkoxide: A Comparison between Ambient Pressure and Supercritical Drying.
    Abebe AM; Soraru GD; Thothadri G; Andoshe DM; Zambotti A; Ahmed GMS; Tirth V; Algahtani A
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manufacturing silica aerogel and cryogel through ambient pressure and freeze drying.
    Di Luigi M; Guo Z; An L; Armstrong JN; Zhou C; Ren S
    RSC Adv; 2022 Jul; 12(33):21213-21222. PubMed ID: 35975055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature.
    Zhang S; Wang Z; Hu Y; Ji H; Xiao Y; Wang J; Xu G; Ding F
    Biomacromolecules; 2022 Dec; 23(12):5056-5064. PubMed ID: 36331293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels.
    Durães L; Ochoa M; Rocha N; Patrício R; Duarte N; Redondo V; Portugal A
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6828-34. PubMed ID: 22962830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Properties of Metal Oxide Aerogels via Ambient Pressure Drying.
    Bangi UKH; Lee KY; Maldar NMN; Park HH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1217-1227. PubMed ID: 30469167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Acidity Levels and Feed Rate on the Porosity of Aerogel Extracted from Rice Husk under Ambient Pressure.
    Ban G; Song S; Lee HW; Kim HT
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared via Two Different Drying Techniques.
    Wang Z; Zhu W; Huang R; Zhang Y; Jia C; Zhao H; Chen W; Xue Y
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33153103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Fabrication and Multi-Properties of Aluminum-Based Aerogels from Aluminum Waste for Thermal Insulation and Oil Absorption Applications.
    Goh XY; Ong RH; Nguyen PTT; Bai T; Aw D; Li T; Nguyen LT; Duong HM
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO
    Guastaferro M; Baldino L; Reverchon E; Cardea S
    Gels; 2021 Nov; 7(4):. PubMed ID: 34842697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Zr on the Microstructure and High-Temperature Phase Separation Evolution of SiOC Aerogels.
    Han Y; Wu Y; Huang S; Zhang H; Liang Z; Guan X; Wu S
    Langmuir; 2023 Nov; 39(45):15950-15961. PubMed ID: 37909422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-Friendly Synthesis of Water-Glass-Based Silica Aerogels via Catechol-Based Modifier.
    Kim H; Kim K; Kim H; Lee DJ; Park J
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33271971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials.
    Druel L; Bardl R; Vorwerg W; Budtova T
    Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-strength carbon aerogels for high temperature thermal insulation.
    Wu K; Zhou Q; Cao J; Qian Z; Niu B; Long D
    J Colloid Interface Sci; 2022 Mar; 609():667-675. PubMed ID: 34823850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of SiCN(O) Aerogel Composites with Low Thermal Conductivity by Wrapping Mesoporous Aerogel Structures over Mullite Fibers.
    Wang W; Pang L; Jiang M; Zhu Y; Wang F; Sun J; Qi H
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Porous Silicon Oxycarbide Materials: Effects of Solvents on Microstructural Features of Poly(methylhydrosiloxane)/Divynilbenzene Aerogels.
    Aguirre-Medel S; Jana P; Kroll P; Sorarù GD
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology control of nickel nanoparticles prepared in situ within silica aerogels produced by novel ambient pressure drying.
    Lu J; Wang J; Hassan KT; Talmantaite A; Xiao Z; Hunt MRC; Šiller L
    Sci Rep; 2020 Jul; 10(1):11743. PubMed ID: 32678151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Silica Aerogels by Ambient Pressure Drying without Causing Equipment Corrosion.
    Zhu L; Wang Y; Cui S; Yang F; Nie Z; Li Q; Wei Q
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30072663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.