These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37721370)

  • 21. Bimetal Substitution Enabled Energetic Polyanion Cathode for Sodium-Ion Batteries.
    Zhao QY; Li JY; Chen MJ; Wang H; Xu YT; Wang XF; Ma X; Wu Q; Wu X; Zeng XX
    Nano Lett; 2022 Dec; 22(23):9685-9692. PubMed ID: 36441867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elevating Energy Density for Sodium-Ion Batteries through Multielectron Reactions.
    Zhao Y; Gao X; Gao H; Dolocan A; Goodenough JB
    Nano Lett; 2021 Mar; 21(5):2281-2287. PubMed ID: 33621101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium Rich Vanadium Oxy-Fluorophosphate - Na
    Essehli R; Yahia HB; Amin R; Li M; Morales D; Greenbaum SG; Abouimrane A; Parejiya A; Mahmoud A; Boulahya K; Dixit M; Belharouak I
    Adv Sci (Weinh); 2023 Aug; 10(22):e2301091. PubMed ID: 37202659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boosting Multielectron Reaction Stability of Sodium Vanadium Phosphate by High-Entropy Substitution.
    Hao Z; Shi X; Zhu W; Yang Z; Zhou X; Wang C; Li L; Hua W; Ma CQ; Chou S
    ACS Nano; 2024 Apr; 18(13):9354-9364. PubMed ID: 38517038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homeostatic Solid Solution Reaction in Phosphate Cathode: Breaking High-Voltage Barrier to Achieve High Energy Density and Long Life of Sodium-Ion Batteries.
    Gu ZY; Zhao XX; Li K; Cao JM; Wang XT; Guo JZ; Liu HH; Zheng SH; Liu DH; Wu HY; Wu XL
    Adv Mater; 2024 Jun; 36(23):e2400690. PubMed ID: 38373436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring Highly Reversible 1.5-Electron Reactions (V
    Liu R; Xu G; Li Q; Zheng S; Zheng G; Gong Z; Li Y; Kruskop E; Fu R; Chen Z; Amine K; Yang Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43632-43639. PubMed ID: 29164850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Na
    Shen X; Su Y; Yang N; Jiang X; Liu X; Mo J; Ran Y; Wu F
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47685-47695. PubMed ID: 36219729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural design enabled a hypotoxic Na
    Zhang LM; Cao K; Wang S; Chen F; Dong JM; Ren NQ; Li YX; Wen ZY; Chen CH
    Nanoscale; 2022 Nov; 14(42):15640-15650. PubMed ID: 36263768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the Structural Phase Transitions in Na
    Thangavel R; Han D; Moorthy B; Ganesan BK; Moorthy M; Park Y; Nam KW; Lee YS
    Small Methods; 2022 Feb; 6(2):e2100888. PubMed ID: 35174991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Investigation of a NASICON-Type High-Voltage Cathode Material for High-Power Sodium-Ion Batteries.
    Chen M; Hua W; Xiao J; Cortie D; Guo X; Wang E; Gu Q; Hu Z; Indris S; Wang XL; Chou SL; Dou SX
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2449-2456. PubMed ID: 31657087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting sodium-ion battery performance by anion doping in NASICON Na
    Zhu Q; Wu J; Li W; Hu X; Tian N; He L; Li Y
    J Colloid Interface Sci; 2024 Jun; 663():191-202. PubMed ID: 38401440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anion Substitution Strategy toward an Advanced NASICON-Na
    Ge X; He L; Guan C; Wang X; Li J; Lai Y; Zhang Z
    ACS Nano; 2024 Jan; 18(2):1714-1723. PubMed ID: 38156873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into Reversible Sodium Intercalation in a Novel Sodium-Deficient NASICON-Type Structure:Na
    Hou J; Hadouchi M; Sui L; Liu J; Tang M; Hu Z; Lin HJ; Kuo CY; Chen CT; Pao CW; Huang Y; Ma J
    Small; 2023 Nov; 19(46):e2302726. PubMed ID: 37480195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NASICON-Type Na
    Kim Y; Oh G; Lee J; Baek J; Alfaza G; Lee S; Mathew V; Kansara S; Hwang JY; Kim J
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5896-5904. PubMed ID: 38266753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Efficiency and Stable Zn-Na
    Guo G; Tan X; Wang K; Zhang H
    ChemSusChem; 2022 Jun; 15(11):e202200313. PubMed ID: 35344279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designed One-Pot Strategy for Dual-Carbon-Protected Na
    Li J; Peng B; Li Y; Yu L; Wang G; Shi L; Zhang G
    Chemistry; 2019 Oct; 25(57):13094-13098. PubMed ID: 31298763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrosynthesis of Na
    Islam S; Alfaruqi MH; Putro DY; Mathew V; Kim S; Jo J; Kim S; Sun YK; Kim K; Kim J
    ChemSusChem; 2018 Jul; 11(13):2239-2247. PubMed ID: 29708309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zn-doping Effects of Na-rich Na
    Li X; Chen C; Yang J; Fang Z; Zeng S; Feng T; Zhou H; Zhang S; Wu M
    J Colloid Interface Sci; 2022 Jun; 616():246-252. PubMed ID: 35203037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of Crystallographic Sites on Sodium-Ion Extraction from NASICON-Structured Cathodes for Sodium-Ion Batteries.
    Wang Q; Gao H; Li J; Liu GB; Jin H
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14312-14320. PubMed ID: 33749228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.