These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37721850)

  • 21. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.
    Shiraishi N; Tajima H
    Phys Rev E; 2017 Aug; 96(2-1):022138. PubMed ID: 28950461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Periodic thermodynamics of open quantum systems.
    Brandner K; Seifert U
    Phys Rev E; 2016 Jun; 93(6):062134. PubMed ID: 27415235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Few-qubit quantum refrigerator for cooling a multi-qubit system.
    Arısoy O; Müstecaplıoğlu ÖE
    Sci Rep; 2021 Jun; 11(1):12981. PubMed ID: 34155244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S; Agarwalla BK
    Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite-Time Quantum Landauer Principle and Quantum Coherence.
    Van Vu T; Saito K
    Phys Rev Lett; 2022 Jan; 128(1):010602. PubMed ID: 35061471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities.
    Tanimura Y
    J Chem Phys; 2014 Jul; 141(4):044114. PubMed ID: 25084888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The thermodynamic cost of driving quantum systems by their boundaries.
    Barra F
    Sci Rep; 2015 Oct; 5():14873. PubMed ID: 26445899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning Many-Body Hamiltonians with Heisenberg-Limited Scaling.
    Huang HY; Tong Y; Fang D; Su Y
    Phys Rev Lett; 2023 May; 130(20):200403. PubMed ID: 37267566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shannon entropic temperature and its lower and upper bounds for non-Markovian stochastic dynamics.
    Ray S; Bag BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032103. PubMed ID: 25314391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundamental limit on the rate of quantum dynamics: the unified bound is tight.
    Levitin LB; Toffoli T
    Phys Rev Lett; 2009 Oct; 103(16):160502. PubMed ID: 19905679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum thermodynamics with local control.
    Lekscha J; Wilming H; Eisert J; Gallego R
    Phys Rev E; 2018 Feb; 97(2-1):022142. PubMed ID: 29548160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum Advantage of Thermal Machines with Bose and Fermi Gases.
    Sur S; Ghosh A
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluctuations in Extractable Work Bound the Charging Power of Quantum Batteries.
    García-Pintos LP; Hamma A; Del Campo A
    Phys Rev Lett; 2020 Jul; 125(4):040601. PubMed ID: 32794781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum-enhanced absorption refrigerators.
    Correa LA; Palao JP; Alonso D; Adesso G
    Sci Rep; 2014 Feb; 4():3949. PubMed ID: 24492860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Narrow bounds for the quantum capacity of thermal attenuators.
    Rosati M; Mari A; Giovannetti V
    Nat Commun; 2018 Oct; 9(1):4339. PubMed ID: 30337632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sufficient and necessary condition for zero quantum entropy rates under any coupling to the environment.
    Rodríguez-Rosario CA; Kimura G; Imai H; Aspuru-Guzik A
    Phys Rev Lett; 2011 Feb; 106(5):050403. PubMed ID: 21405379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines.
    Latune CL; Sinayskiy I; Petruccione F
    Sci Rep; 2019 Feb; 9(1):3191. PubMed ID: 30816164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current fluctuations in quantum absorption refrigerators.
    Segal D
    Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.