These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37721998)

  • 1. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics.
    Foo ZH; Thomas JB; Heath SM; Garcia JA; Lienhard JH
    Environ Sci Technol; 2023 Oct; 57(39):14747-14759. PubMed ID: 37721998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration.
    Foo ZH; Rehman D; Bouma AT; Monsalvo S; Lienhard JH
    Environ Sci Technol; 2023 Apr; 57(15):6320-6330. PubMed ID: 37027336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodialysis for the Concentration of Lithium-Containing Brines-An Investigation on the Applicability.
    Rögener F; Tetampel L
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration.
    Pramanik BK; Asif MB; Roychand R; Shu L; Jegatheesan V; Bhuiyan M; Hai FI
    Chemosphere; 2020 Dec; 260():127623. PubMed ID: 32668363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar-enhanced lithium extraction with self-sustaining water recycling from salt-lake brines.
    Xia Q; Deng Z; Sun S; Zhao W; Ding J; Xi B; Gao G; Wang C
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2400159121. PubMed ID: 38814870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium recovery from salt lake brine by H2TiO3.
    Chitrakar R; Makita Y; Ooi K; Sonoda A
    Dalton Trans; 2014 Jun; 43(23):8933-9. PubMed ID: 24801244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia.
    Haferburg G; Gröning JAD; Schmidt N; Kummer NA; Erquicia JC; Schlömann M
    Microbiol Res; 2017 Jun; 199():19-28. PubMed ID: 28454706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium recovery using electrochemical technologies: Advances and challenges.
    Wu L; Zhang C; Kim S; Hatton TA; Mo H; Waite TD
    Water Res; 2022 Aug; 221():118822. PubMed ID: 35834973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine.
    Zhang S; Wei X; Cao X; Peng M; Wang M; Jiang L; Jin J
    Nat Commun; 2024 Jan; 15(1):238. PubMed ID: 38172144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation.
    Ounissi T; Belhadj Ammar R; Larchet C; Chaabane L; Baklouti L; Dammak L; Selmane Bel Hadj Hmida E
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology.
    Last WM; Ginn FM
    Saline Syst; 2005 Nov; 1():10. PubMed ID: 16297237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Selective and Pollution-Free Electrochemical Extraction of Lithium by a Polyaniline/Li
    Zhao A; Liu J; Ai X; Yang H; Cao Y
    ChemSusChem; 2019 Apr; 12(7):1361-1367. PubMed ID: 30694613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multipass Nanofiltration for Lithium Separation with High Selectivity and Recovery.
    Wang R; Alghanayem R; Lin S
    Environ Sci Technol; 2023 Sep; 57(38):14464-14471. PubMed ID: 37706485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic characteristics and evolution laws of underground brine in Mahai salt lake of Qaidam Basin during mining process.
    Kong Z; Wang G; Li Q; Zhao Q; Hu S
    Sci Rep; 2024 May; 14(1):10778. PubMed ID: 38734705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes.
    Huang J; Han M; Yang J; Kappler A; Jiang H
    Appl Environ Microbiol; 2022 May; 88(10):e0013222. PubMed ID: 35499328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia).
    Sorokin DY; Abbas B; Geleijnse M; Pimenov NV; Sukhacheva MV; van Loosdrecht MC
    FEMS Microbiol Ecol; 2015 Apr; 91(4):. PubMed ID: 25764464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Donnan dialysis-electrodialysis for efficient ammonia recovery from anaerobic digester effluent.
    Dai Z; Chen C; Li Y; Zhang H; Yao J; Rodrigues M; Kuntke P; Han L
    Environ Sci Ecotechnol; 2023 Jul; 15():100255. PubMed ID: 36915297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Understanding of Sieving Lithium Ions Using a Biobased Sorbent Technology for Sustainable Lithium Reclamation and Cleansing Brines.
    Adrah K; Dawood S; Rathnayake H
    ACS Omega; 2024 May; 9(20):21917-21929. PubMed ID: 38799357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Selectivities among Monovalent Cations in Dialysis through Cation-Exchange Membranes Coated with Polyelectrolyte Multilayers.
    Yang L; Tang C; Ahmad M; Yaroshchuk A; Bruening ML
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44134-44143. PubMed ID: 30433759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.