These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37722092)

  • 1. Superlattice Surface Lattice Resonances in Plasmonic Nanoparticle Arrays with Patterned Dielectrics.
    Wang D; Hu J; Schatz GC; Odom TW
    J Phys Chem Lett; 2023 Sep; 14(38):8525-8530. PubMed ID: 37722092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Watkins NE; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; Martins de Pina J; Schaller RD; Schatz GC; Sargent EH; Odom TW
    Nano Lett; 2020 Feb; 20(2):1468-1474. PubMed ID: 32004007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment.
    Yang X; Xiao G; Lu Y; Li G
    Opt Express; 2019 Sep; 27(18):25384-25394. PubMed ID: 31510411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Hybridization in Plasmonic Honeycomb Lattices.
    Li R; Bourgeois MR; Cherqui C; Guan J; Wang D; Hu J; Schaller RD; Schatz GC; Odom TW
    Nano Lett; 2019 Sep; 19(9):6435-6441. PubMed ID: 31390214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Lattice Resonances in 3D Chiral Metacrystals for Plasmonic Sensing.
    Manoccio M; Tasco V; Todisco F; Passaseo A; Cuscuna M; Tarantini I; Gigli G; Esposito M
    Adv Sci (Weinh); 2023 Feb; 10(6):e2206930. PubMed ID: 36575146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Centimeter-Scale Plasmonic Nanoparticle Arrays with Ultranarrow Surface Lattice Resonances.
    Yang F; Chen Q; Wang J; Chang JJ; Dong W; Cao W; Ye S; Shi L; Nie Z
    ACS Nano; 2023 Jan; 17(1):725-734. PubMed ID: 36575649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second Harmonic Spectroscopy of Surface Lattice Resonances.
    Hooper DC; Kuppe C; Wang D; Wang W; Guan J; Odom TW; Valev VK
    Nano Lett; 2019 Jan; 19(1):165-172. PubMed ID: 30525669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super- and Subradiant Lattice Resonances in Bipartite Nanoparticle Arrays.
    Cuartero-González A; Sanders S; Zundel L; Fernández-Domínguez AI; Manjavacas A
    ACS Nano; 2020 Sep; 14(9):11876-11887. PubMed ID: 32794729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice-Resonance Metalenses for Fully Reconfigurable Imaging.
    Hu J; Wang D; Bhowmik D; Liu T; Deng S; Knudson MP; Ao X; Odom TW
    ACS Nano; 2019 Apr; 13(4):4613-4620. PubMed ID: 30896920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays.
    Liu J; Wang W; Wang D; Hu J; Ding W; Schaller RD; Schatz GC; Odom TW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5925-5930. PubMed ID: 30850522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of extremely narrow plasmonic surface lattice resonances observed by MIM nanogratings under normal incidence in asymmetric environments.
    Yang X; Xia D; Li J
    Nanotechnology; 2022 Aug; 33(44):. PubMed ID: 35901661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Far-field coupling between moiré photonic lattices.
    Guan J; Hu J; Wang Y; Tan MJH; Schatz GC; Odom TW
    Nat Nanotechnol; 2023 May; 18(5):514-520. PubMed ID: 36781995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices.
    Wang D; Yang A; Wang W; Hua Y; Schaller RD; Schatz GC; Odom TW
    Nat Nanotechnol; 2017 Sep; 12(9):889-894. PubMed ID: 28692060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of thermal annealing and laser treatment on the morphology and optical responses of mono- and bi-metallic plasmonic honeycomb lattice.
    Chen YJ; Schmidl G; Dellith A; Gawlik A; Jia G; Bocklitz T; Wu X; Plentz J; Huang JS
    Nanoscale; 2023 Oct; 15(41):16626-16635. PubMed ID: 37772449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface lattice resonance in three-dimensional plasmonic arrays fabricated via self-assembly of silica-coated gold nanoparticles.
    Hasegawa M; Watanabe K; Namigata H; Welling TAJ; Suga K; Nagao D
    J Colloid Interface Sci; 2023 Mar; 633():226-232. PubMed ID: 36446215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E; Volk K; Mulvaney P; Karg M
    Langmuir; 2020 Nov; 36(45):13601-13612. PubMed ID: 33147412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Photoelectrocatalysis in Copper-Platinum Core-Shell Nanoparticle Lattices.
    Deng S; Zhang B; Choo P; Smeets PJM; Odom TW
    Nano Lett; 2021 Feb; 21(3):1523-1529. PubMed ID: 33508199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.