These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37722106)

  • 1. Machine Learning-Based Prediction of Activation Energies for Chemical Reactions on Metal Surfaces.
    Hutton DJ; Cordes KE; Michel C; Göltl F
    J Chem Inf Model; 2023 Oct; 63(19):6006-6013. PubMed ID: 37722106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.
    Ferrin P; Simonetti D; Kandoi S; Kunkes E; Dumesic JA; Nørskov JK; Mavrikakis M
    J Am Chem Soc; 2009 Apr; 131(16):5809-15. PubMed ID: 19334787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implicit solvent effects in the determination of Brønsted-Evans-Polanyi relationships for heterogeneously catalyzed reactions.
    Gomes JRB; Viñes F; Illas F; Fajín JLC
    Phys Chem Chem Phys; 2019 Aug; 21(32):17687-17695. PubMed ID: 31364629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Importance of Reaction Energy in Predicting Chemical Reaction Barriers with Machine Learning Models.
    Lalith N; Singh AR; Gauthier JA
    Chemphyschem; 2024 Jul; 25(13):e202300933. PubMed ID: 38517585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invariant Molecular Representations for Heterogeneous Catalysis.
    Chowdhury J; Fricke C; Bamidele O; Bello M; Yang W; Heyden A; Terejanu G
    J Chem Inf Model; 2024 Jan; 64(2):327-339. PubMed ID: 38197612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.
    Michaelides A; Liu ZP; Zhang CJ; Alavi A; King DA; Hu P
    J Am Chem Soc; 2003 Apr; 125(13):3704-5. PubMed ID: 12656593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transferable prediction model of molecular adsorption on metals based on adsorbate and substrate properties.
    Restuccia P; Ahmad EA; Harrison NM
    Phys Chem Chem Phys; 2022 Jul; 24(27):16545-16555. PubMed ID: 35766802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density Functional Study of Methane Activation by Frustrated Lewis Pairs with Group 13 Trihalides and Group 15 Pentahalides and a Machine Learning Analysis of Their Barrier Heights.
    Migliaro I; Cundari TR
    J Chem Inf Model; 2020 Oct; 60(10):4958-4966. PubMed ID: 32937065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure Sensitivity of Metal Catalysts Revealed by Interpretable Machine Learning and First-Principles Calculations.
    Shu W; Li J; Liu JX; Zhu C; Wang T; Feng L; Ouyang R; Li WX
    J Am Chem Soc; 2024 Mar; 146(12):8737-8745. PubMed ID: 38483446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear relationship between activation energies and reaction energies for coverage-dependent dissociation reactions on rhodium surfaces.
    Inderwildi OR; Lebiedz D; Warnatz J
    Phys Chem Chem Phys; 2005 Jul; 7(13):2552-3. PubMed ID: 16189563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis.
    Xu J; Cao XM; Hu P
    Phys Chem Chem Phys; 2021 May; 23(19):11155-11179. PubMed ID: 33972971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations.
    Wang Y; Xiao L; Qi Y; Mahmoodinia M; Feng X; Yang J; Zhu YA; Chen D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19269-19280. PubMed ID: 31441913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Exchange-Correlation Potential on the Transferability of Brønsted-Evans-Polanyi Relationships in Heterogeneous Catalysis.
    Fajín JL; Viñes F; D S Cordeiro MN; Illas F; Gomes JR
    J Chem Theory Comput; 2016 May; 12(5):2121-6. PubMed ID: 27111183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Activation Energy Prediction of Gas-Phase Reactions by Machine Learning.
    Choi S; Kim Y; Kim JW; Kim Z; Kim WY
    Chemistry; 2018 Aug; 24(47):12354-12358. PubMed ID: 29473970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT studies of hydrocarbon combustion on metal surfaces.
    Arya M; Mirzaei AA; Davarpanah AM; Barakati SM; Atashi H; Mohsenzadeh A; Bolton K
    J Mol Model; 2018 Feb; 24(2):47. PubMed ID: 29396776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brønsted-Evans-Polanyi relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.
    Assary RS; Broadbelt LJ; Curtiss LA
    J Mol Model; 2012 Jan; 18(1):145-50. PubMed ID: 21523538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group and Period-Based Representations for Improved Machine Learning Prediction of Heterogeneous Alloy Catalysts.
    Li X; Chiong R; Page AJ
    J Phys Chem Lett; 2021 Jun; 12(21):5156-5162. PubMed ID: 34032450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.