These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37722106)

  • 21. Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning.
    Li X; Chiong R; Hu Z; Cornforth D; Page AJ
    J Chem Theory Comput; 2019 Dec; 15(12):6882-6894. PubMed ID: 31503488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO
    Roy D; Mandal SC; Pathak B
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56151-56163. PubMed ID: 34787997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving Accuracy and Transferability of Machine Learning Chemical Activation Energies by Adding Electronic Structure Information.
    Marques E; de Gendt S; Pourtois G; van Setten MJ
    J Chem Inf Model; 2023 Mar; 63(5):1454-1461. PubMed ID: 36864757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine Learning of Reaction Properties via Learned Representations of the Condensed Graph of Reaction.
    Heid E; Green WH
    J Chem Inf Model; 2022 May; 62(9):2101-2110. PubMed ID: 34734699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear Scaling Relationships for Furan Hydrodeoxygenation over Transition Metal and Bimetallic Surfaces.
    Kanchan DR; Banerjee A
    ChemSusChem; 2023 Sep; 16(18):e202300491. PubMed ID: 37314827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints.
    Rahaman O; Gagliardi A
    J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies.
    Jorner K; Brinck T; Norrby PO; Buttar D
    Chem Sci; 2021 Jan; 12(3):1163-1175. PubMed ID: 36299676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production.
    Kim JH; Sa YJ; Lim T; Woo J; Joo SH
    Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals.
    Pereira F; Xiao K; Latino DA; Wu C; Zhang Q; Aires-de-Sousa J
    J Chem Inf Model; 2017 Jan; 57(1):11-21. PubMed ID: 28033004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules.
    Wen M; Blau SM; Spotte-Smith EWC; Dwaraknath S; Persson KA
    Chem Sci; 2020 Dec; 12(5):1858-1868. PubMed ID: 34163950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.
    Rodriguez JA; Illas F
    Phys Chem Chem Phys; 2012 Jan; 14(2):427-38. PubMed ID: 22108864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a new definition of surface energy for late transition metals.
    Boucher A; Jones G; Roldan A
    Phys Chem Chem Phys; 2023 Jan; 25(3):1977-1986. PubMed ID: 36541443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring Structure-Sensitive Relations for Small Species Adsorption Using Machine Learning.
    Zong X; Vlachos DG
    J Chem Inf Model; 2022 Sep; 62(18):4361-4368. PubMed ID: 36094012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What Does the Machine Learn? Knowledge Representations of Chemical Reactivity.
    Kammeraad JA; Goetz J; Walker EA; Tewari A; Zimmerman PM
    J Chem Inf Model; 2020 Mar; 60(3):1290-1301. PubMed ID: 32091880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trends in methanol decomposition on transition metal alloy clusters from scaling and Brønsted-Evans-Polanyi relationships.
    Mehmood F; Rankin RB; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Jun; 14(24):8644-52. PubMed ID: 22588638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning.
    Salem M; Cowan MJ; Mpourmpakis G
    ACS Omega; 2022 Feb; 7(5):4471-4481. PubMed ID: 35155939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward molecular catalysts by computer.
    Raugei S; DuBois DL; Rousseau R; Chen S; Ho MH; Bullock RM; Dupuis M
    Acc Chem Res; 2015 Feb; 48(2):248-55. PubMed ID: 25574854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning.
    Nandy A; Duan C; Taylor MG; Liu F; Steeves AH; Kulik HJ
    Chem Rev; 2021 Aug; 121(16):9927-10000. PubMed ID: 34260198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.