These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37722290)
1. Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma. Ding D; Wang L; Zhang Y; Shi K; Shen Y Transl Oncol; 2023 Dec; 38():101784. PubMed ID: 37722290 [TBL] [Abstract][Full Text] [Related]
2. Leveraging programmed cell death signature to predict clinical outcome and immunotherapy benefits in postoperative bladder cancer. Wang Y; Zhang Q Sci Rep; 2024 Oct; 14(1):22976. PubMed ID: 39363008 [TBL] [Abstract][Full Text] [Related]
3. Pan-cancer analysis identifies proteasome 26S subunit, ATPase (PSMC) family genes, and related signatures associated with prognosis, immune profile, and therapeutic response in lung adenocarcinoma. Jia H; Tang WJ; Sun L; Wan C; Zhou Y; Shen WZ Front Genet; 2022; 13():1017866. PubMed ID: 36699466 [No Abstract] [Full Text] [Related]
4. A programmed cell death-related model based on machine learning for predicting prognosis and immunotherapy responses in patients with lung adenocarcinoma. Zhang Y; Wang Y; Chen J; Xia Y; Huang Y Front Immunol; 2023; 14():1183230. PubMed ID: 37671155 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning-Based Integration Develops a Macrophage-Related Index for Predicting Prognosis and Immunotherapy Response in Lung Adenocarcinoma. Li Z; Guo M; Lin W; Huang P Arch Med Res; 2023 Nov; 54(7):102897. PubMed ID: 37865004 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer. Wang L; Chen X; Song L; Zou H Anal Cell Pathol (Amst); 2023; 2023():7365503. PubMed ID: 37868825 [TBL] [Abstract][Full Text] [Related]
7. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns. Wei Q; Jiang X; Miao X; Zhang Y; Chen F; Zhang P J Cancer Res Clin Oncol; 2023 Oct; 149(13):11351-11368. PubMed ID: 37378675 [TBL] [Abstract][Full Text] [Related]
8. Machine learning-based cell death signature for predicting the prognosis and immunotherapy benefit in stomach adenocarcinoma. Li F; Feng Q; Tao R Medicine (Baltimore); 2024 Mar; 103(10):e37314. PubMed ID: 38457593 [TBL] [Abstract][Full Text] [Related]
9. Machine learning developed a CD8 Chen R; Zheng Y; Fei C; Ye J; Fei H Sci Rep; 2024 Mar; 14(1):5794. PubMed ID: 38461331 [TBL] [Abstract][Full Text] [Related]
10. A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma. Ma C; Li F; Gu Z; Yang Y; Qi Y Front Pharmacol; 2023; 14():1146840. PubMed ID: 37670938 [No Abstract] [Full Text] [Related]
11. Identification of immune activation-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Zeng W; Wang J; Yang J; Chen Z; Cui Y; Li Q; Luo G; Ding H; Ju S; Li B; Chen J; Xie Y; Tong X; Liu M; Zhao J Front Immunol; 2023; 14():1217590. PubMed ID: 37492563 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma. Wu P; Zheng Y; Wang Y; Wang Y; Liang N J Transl Med; 2020 Oct; 18(1):380. PubMed ID: 33028329 [TBL] [Abstract][Full Text] [Related]
13. Machine learning based intratumor heterogeneity signature for predicting prognosis and immunotherapy benefit in stomach adenocarcinoma. Chen H; Zheng Z; Yang C; Tan T; Jiang Y; Xue W Sci Rep; 2024 Oct; 14(1):23328. PubMed ID: 39375438 [TBL] [Abstract][Full Text] [Related]
14. A novel pyroptosis-related prognostic signature for lung adenocarcinoma: Identification and multi-angle verification. Wang X; Zhou J; Li Z; Chen X; Wei Q; Chen K; Jiang R Front Genet; 2023; 14():1160915. PubMed ID: 37077542 [No Abstract] [Full Text] [Related]
15. Development of a copper metabolism-related gene signature in lung adenocarcinoma. Chang W; Li H; Zhong L; Zhu T; Chang Z; Ou W; Wang S Front Immunol; 2022; 13():1040668. PubMed ID: 36524120 [TBL] [Abstract][Full Text] [Related]
16. Computational identification and experimental verification of a novel signature based on SARS-CoV-2-related genes for predicting prognosis, immune microenvironment and therapeutic strategies in lung adenocarcinoma patients. Wang Y; Xu Y; Deng Y; Yang L; Wang D; Yang Z; Zhang Y Front Immunol; 2024; 15():1366928. PubMed ID: 38601163 [TBL] [Abstract][Full Text] [Related]
17. Machine learning developed an intratumor heterogeneity signature for predicting prognosis and immunotherapy benefits in skin cutaneous melanoma. Zhang W; Wang S Melanoma Res; 2024 Jun; 34(3):215-224. PubMed ID: 38364052 [TBL] [Abstract][Full Text] [Related]
18. Machine learning developed an intratumor heterogeneity signature for predicting clinical outcome and immunotherapy benefit in bladder cancer. Chen C; Zhang J; Liu X; Zhuang Q; Lu H; Hou J Transl Androl Urol; 2024 Jul; 13(7):1104-1117. PubMed ID: 39100839 [TBL] [Abstract][Full Text] [Related]
19. Histone acetylation modification regulator-mediated tumor microenvironment infiltration characteristics and prognostic model of lung adenocarcinoma patients. Wang W; Shen Y; Zhang P; Liu L; Sha X; Li H; Wang S; Zhang H; Zhou Y; Shi J J Thorac Dis; 2022 Oct; 14(10):3886-3902. PubMed ID: 36389327 [TBL] [Abstract][Full Text] [Related]
20. Identification of N7-methylguanosine related signature for prognosis and immunotherapy efficacy prediction in lung adenocarcinoma. Li Z; Wang W; Wu J; Ye X Front Med (Lausanne); 2022; 9():962972. PubMed ID: 36091687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]