These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37722342)
1. A multivariate algorithm for identifying contaminated peanut using visible and near-infrared hyperspectral imaging. Guo Z; Zhang J; Sun J; Dong H; Huang J; Geng L; Li S; Jing X; Guo Y; Sun X Talanta; 2024 Jan; 267():125187. PubMed ID: 37722342 [TBL] [Abstract][Full Text] [Related]
2. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology. Li H; Zhang L; Sun H; Rao Z; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690 [TBL] [Abstract][Full Text] [Related]
3. Enhanced detection of Aspergillus flavus in peanut kernels using a multi-scale attention transformer (MSAT): Advancements in food safety and contamination analysis. Guo Z; Zhang J; Wang H; Dong H; Li S; Shao X; Huang J; Yin X; Zhang Q; Guo Y; Sun X; Darwish I Int J Food Microbiol; 2024 Oct; 423():110831. PubMed ID: 39083880 [TBL] [Abstract][Full Text] [Related]
4. Subpixel detection of peanut in wheat flour using a matched subspace detector algorithm and near-infrared hyperspectral imaging. Laborde A; Jaillais B; Roger JM; Metz M; Jouan-Rimbaud Bouveresse D; Eveleigh L; Cordella C Talanta; 2020 Aug; 216():120993. PubMed ID: 32456911 [TBL] [Abstract][Full Text] [Related]
5. Spatio-temporal distribution patterns and quantitative detection of aflatoxin B Guo Z; Zhang J; Dong H; Sun J; Huang J; Li S; Ma C; Guo Y; Sun X Food Chem; 2023 Oct; 424():136441. PubMed ID: 37244182 [TBL] [Abstract][Full Text] [Related]
6. Intelligent identification of film on cotton based on hyperspectral imaging and convolutional neural network. Liu Z; Zhao L; Yu X; Zhang Y; Cui J; Ni C; Zhang L Sci Prog; 2022; 105(4):368504221137461. PubMed ID: 36514818 [TBL] [Abstract][Full Text] [Related]
7. Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial-Spectral Attention 3DCNN and a Transformer. Wang T; Xu Z; Hu H; Xu H; Zhao Y; Mao X Molecules; 2023 Sep; 28(17):. PubMed ID: 37687257 [TBL] [Abstract][Full Text] [Related]
8. Discrimination of Deoxynivalenol Levels of Barley Kernels Using Hyperspectral Imaging in Tandem with Optimized Convolutional Neural Network. Fan KJ; Liu BY; Su WH Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904871 [TBL] [Abstract][Full Text] [Related]
9. Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module. Yang D; Zhou Y; Jie Y; Li Q; Shi T Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124166. PubMed ID: 38493512 [TBL] [Abstract][Full Text] [Related]
10. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging. Cheng J; Sun J; Yao K; Xu M; Dai C Meat Sci; 2023 Jul; 201():109196. PubMed ID: 37087873 [TBL] [Abstract][Full Text] [Related]
11. Comparison of 2D and 3D convolutional neural networks in hyperspectral image analysis of fruits applied to orange bruise detection. Pourdarbani R; Sabzi S; Zohrabi R; García-Mateos G; Fernandez-Beltran R; Molina-Martínez JM; Rohban MH J Food Sci; 2023 Dec; 88(12):5149-5163. PubMed ID: 37876302 [TBL] [Abstract][Full Text] [Related]
12. Robust optimization of convolutional neural networks with a uniform experiment design method: a case of phonocardiogram testing in patients with heart diseases. Ho WH; Huang TH; Yang PY; Chou JH; Qu JY; Chang PC; Chou FI; Tsai JT BMC Bioinformatics; 2021 Nov; 22(Suppl 5):92. PubMed ID: 34749632 [TBL] [Abstract][Full Text] [Related]
13. Use of Visible-Near-Infrared (Vis-NIR) Spectroscopy to Detect Aflatoxin B Tao F; Yao H; Hruska Z; Liu Y; Rajasekaran K; Bhatnagar D Appl Spectrosc; 2019 Apr; 73(4):415-423. PubMed ID: 30700102 [TBL] [Abstract][Full Text] [Related]
14. Aflatoxin rapid detection based on hyperspectral with 1D-convolution neural network in the pixel level. Gao J; Zhao L; Li J; Deng L; Ni J; Han Z Food Chem; 2021 Oct; 360():129968. PubMed ID: 34082378 [TBL] [Abstract][Full Text] [Related]
15. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction. Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539 [TBL] [Abstract][Full Text] [Related]
16. A novel hybrid optimization enabled robust CNN algorithm for an IoT network intrusion detection approach. Bahaa A; Sayed A; Elfangary L; Fahmy H PLoS One; 2022; 17(12):e0278493. PubMed ID: 36454861 [TBL] [Abstract][Full Text] [Related]
17. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel. Zhang L; Wang Y; Wei Y; An D Food Chem; 2022 Feb; 370():131047. PubMed ID: 34626928 [TBL] [Abstract][Full Text] [Related]
18. Predictive Analysis of Linoleic Acid in Red Meat Employing Advanced Ensemble Models of Bayesian and CNN-Bi-LSTM Decision Layer Fusion Based Hyperspectral Imaging. Yan X; Liu S; Wang S; Cui J; Wang Y; Lv Y; Li H; Feng Y; Luo R; Zhang Z; Zhang L Foods; 2024 Jan; 13(3):. PubMed ID: 38338559 [TBL] [Abstract][Full Text] [Related]
19. Hyperspectral imaging-based cutaneous wound classification using neighbourhood extraction 3D convolutional neural network. Cihan M; Ceylan M Biomed Tech (Berl); 2023 Aug; 68(4):427-435. PubMed ID: 36862718 [TBL] [Abstract][Full Text] [Related]
20. Non-Destructive Detection Pilot Study of Vegetable Organic Residues Using VNIR Hyperspectral Imaging and Deep Learning Techniques. Seo Y; Kim G; Lim J; Lee A; Kim B; Jang J; Mo C; Kim MS Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]