BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37722382)

  • 1. Tensor-conductance model for reducing the computational artifact in target tissue for low-frequency dosimetry.
    Diao Y; Liu L; Deng N; Lyu S; Hirata A
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37722382
    [No Abstract]   [Full Text] [Related]  

  • 2. An effective edge conductivity for reducing staircasing error in induced electric field computation for low-frequency magnetic field dosimetry.
    Diao Y; Zhang L; Shi D; Hirata A
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36137544
    [No Abstract]   [Full Text] [Related]  

  • 3. Reducing the staircasing error in computational dosimetry of low-frequency electromagnetic fields.
    Laakso I; Hirata A
    Phys Med Biol; 2012 Feb; 57(4):N25-34. PubMed ID: 22290579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational errors of the induced electric field in voxelized and tetrahedral anatomical head models exposed to spatially uniform and localized magnetic fields.
    Soldati M; Laakso I
    Phys Med Biol; 2020 Jan; 65(1):015001. PubMed ID: 31791030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes.
    Hirata A; Takano Y; Fujiwara O; Dovan T; Kavet R
    Phys Med Biol; 2011 Jul; 56(13):4091-101. PubMed ID: 21693787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of human brain exposure to low-frequency magnetic fields: a numerical assessment of spatially averaged electric fields and exposure limits.
    Chen XL; Benkler S; Chavannes N; De Santis V; Bakker J; van Rhoon G; Mosig J; Kuster N
    Bioelectromagnetics; 2013 Jul; 34(5):375-84. PubMed ID: 23404214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The influence of tissue conductivity on the calculation of electric field in the transcranial magnetic stimulation head model].
    Niu R; Zhang C; Wu C; Lin H; Zhang G; Huo X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Jun; 40(3):401-408. PubMed ID: 37380377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational dosimetry for grounded and ungrounded human models due to contact current.
    Chan KH; Hattori J; Laakso I; Hirata A; Taki M
    Phys Med Biol; 2013 Aug; 58(15):5153-72. PubMed ID: 23835790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast computational E-field dosimetry for transcranial magnetic stimulation using adaptive cross approximation and auxiliary dipole method (ACA-ADM).
    Wang D; Hasan NI; Dannhauer M; Yucel AC; Gomez LJ
    Neuroimage; 2023 Feb; 267():119850. PubMed ID: 36603745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.
    Miranda PC; Hallett M; Basser PJ
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magneto- and electrophosphene thresholds in the retina: a dosimetry modeling study.
    Nissi J; Laakso I
    Phys Med Biol; 2022 Jan; 67(1):. PubMed ID: 34965521
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of Anatomical Model and Skin Conductivity on the Electric Field Induced in the Head by Transcranial Magnetic Stimulation.
    Colella M; Paffi A; Fontana S; Rossano F; De Santis V; Apollonio F; Liberti M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2917-2920. PubMed ID: 31946501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-static approximation error of electric field analysis for transcranial current stimulation.
    Gaugain G; Quéguiner L; Bikson M; Sauleau R; Zhadobov M; Modolo J; Nikolayev D
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36621858
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models.
    Gao YM; Zhang HF; Lin S; Jiang RX; Chen ZY; Lučev Vasić Ž; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2018 Jun; 17(1):71. PubMed ID: 29866126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex.
    Opitz A; Legon W; Rowlands A; Bickel WK; Paulus W; Tyler WJ
    Neuroimage; 2013 Nov; 81():253-264. PubMed ID: 23644000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-individual variations in electric fields induced in the brain by exposure to uniform magnetic fields at 50 Hz.
    Soldati M; Murakami T; Laakso I
    Phys Med Biol; 2020 Oct; 65(21):215006. PubMed ID: 32615544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of local anatomy on the electric field induced by TMS: evaluation at 14 different target sites.
    Janssen AM; Oostendorp TF; Stegeman DF
    Med Biol Eng Comput; 2014 Oct; 52(10):873-83. PubMed ID: 25163822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic numerical assessment of occupational exposure to electromagnetic fields of transcranial magnetic stimulation.
    D'Agostino S; Colella M; Liberti M; Falsaperla R; Apollonio F
    Med Phys; 2022 May; 49(5):3416-3431. PubMed ID: 35196394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of white matter conductivity anisotropy on electric field strength induced by electroconvulsive therapy.
    Lee WH; Deng ZD; Laine AF; Lisanby SH; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5473-6. PubMed ID: 22255576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.