BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37722523)

  • 1. Optimization of microplate-based phenol-sulfuric acid method and application to the multi-sample measurements of cellulose nanofibers.
    Ogura I; Sugiyama M; Tai R; Mano H; Matsuzawa T
    Anal Biochem; 2023 Nov; 681():115329. PubMed ID: 37722523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format.
    Masuko T; Minami A; Iwasaki N; Majima T; Nishimura S; Lee YC
    Anal Biochem; 2005 Apr; 339(1):69-72. PubMed ID: 15766712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry.
    Albalasmeh AA; Berhe AA; Ghezzehei TA
    Carbohydr Polym; 2013 Sep; 97(2):253-61. PubMed ID: 23911443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and improvement of phenol-sulfuric acid microassay for glucose-based glycogen.
    Rasouli M; Ostovar-Ravari A; Shokri-Afra H
    Eur Rev Med Pharmacol Sci; 2014; 18(14):2020-4. PubMed ID: 25027341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method.
    Yue F; Zhang J; Xu J; Niu T; Lü X; Liu M
    Front Nutr; 2022; 9():963318. PubMed ID: 35983486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into structure and properties of cellulose nanofibrils (CNFs) prepared by screw extrusion and deep eutectic solvent permeation.
    Yan M; Tian C; Wu T; Huang X; Zhong Y; Yang P; Zhang L; Ma J; Lu H; Zhou X
    Int J Biol Macromol; 2021 Nov; 191():422-431. PubMed ID: 34563572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate.
    Zhang WH; Wu J; Weng L; Zhang H; Zhang J; Wu A
    Carbohydr Polym; 2020 Jan; 227():115332. PubMed ID: 31590887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Fe
    Karamipour A; Khadiv Parsi P; Zahedi P; Moosavian SMA
    Int J Biol Macromol; 2020 Jul; 154():1132-1139. PubMed ID: 31712150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency.
    Xing L; Hu C; Zhang W; Guan L; Gu J
    Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An easy-to-use platform for colorimetric determination of dextran: A potential application for the sugar industry.
    Chayavanich K; Sapyen W; Imyim A
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123761. PubMed ID: 38141504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric micromethods for glutaraldehyde determination by means of phenol and sulfuric acid or phenol and perchloric acid.
    Boratyński J; Zal T
    Anal Biochem; 1990 Feb; 184(2):259-62. PubMed ID: 2158247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of heat treatment on physicochemical and microstructure properties of myofibrillar proteins combined with glucose and cellulose nanofibers.
    Wang P; Li Y; Qu Y; Wang B; Huang M; Sun J; Zhang M; Huang H; Zhang C
    Food Chem; 2022 Sep; 387():132775. PubMed ID: 35381414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks.
    Soni B; Hassan el B; Mahmoud B
    Carbohydr Polym; 2015 Dec; 134():581-9. PubMed ID: 26428161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a phenol-sulfuric acid method in a microplate format for the quantification of soluble sugars in ruminant feeds.
    Kondo M; Mulianda R; Matamura M; Shibata T; Mishima T; Jayanegara A; Isono N
    Anim Sci J; 2021; 92(1):e13530. PubMed ID: 33638207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using cellulose fibers to fabricate transparent paper by microfibrillation.
    Li Z; Liu W; Guan F; Li G; Song Z; Yu D; Wang H; Liu H
    Carbohydr Polym; 2019 Jun; 214():26-33. PubMed ID: 30925996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid.
    Zhang Y; Ikeda A; Hori N; Takemura A; Ono H; Yamada T
    Bioresour Technol; 2006 Jan; 97(2):313-21. PubMed ID: 16171687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination.
    Elkady M; Salama E; Amer WA; Ebeid EM; Ayad MM; Shokry H
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43077-43092. PubMed ID: 32729039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an Innovative Colorimetric DNA Biosensor Based on Sugar Measurement.
    El Aamri M; Khalki Y; Mohammadi H; Amine A
    Biosensors (Basel); 2023 Aug; 13(9):. PubMed ID: 37754087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenol removal from wastewater by surface imprinted bacterial cellulose nanofibres.
    Derazshamshir A; Göktürk I; Tamahkar E; Yılmaz F; Sağlam N; Denizli A
    Environ Technol; 2020 Oct; 41(24):3134-3145. PubMed ID: 30919740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment.
    Khawas P; Deka SC
    Carbohydr Polym; 2016 Feb; 137():608-616. PubMed ID: 26686170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.