These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37722585)

  • 1. Robust expression of the TRPC1 channel associated with photoreceptor loss in the rat retina.
    Caminos E; Murillo-Martínez M; García-Belando M; Cabanes-Sanchís JJ; Martinez-Galan JR
    Exp Eye Res; 2023 Nov; 236():109655. PubMed ID: 37722585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration.
    Caminos E; López-López S; Martinez-Galan JR
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between rat retinal degeneration and potassium channel KCNQ5 expression.
    Caminos E; Vaquero CF; Martinez-Galan JR
    Exp Eye Res; 2015 Feb; 131():1-11. PubMed ID: 25499209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clusterin enhances cell survival by suppressing neuronal nitric-oxide synthase expression in the rhodopsin S334ter-line3 retinitis pigmentosa model.
    Vargas A; Yamamoto KL; Craft CM; Lee EJ
    Brain Res; 2021 Oct; 1768():147575. PubMed ID: 34242654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in NMDA receptor expression during retinal degeneration in the RCS rat.
    Gründer T; Kohler K; Guenther E
    Vis Neurosci; 2001; 18(5):781-7. PubMed ID: 11925013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light exposure causes functional changes in the retina: increased photoreceptor cation channel permeability, photoreceptor apoptosis, and altered retinal metabolic function.
    Yu TY; Acosta ML; Ready S; Cheong YL; Kalloniatis M
    J Neurochem; 2007 Oct; 103(2):714-24. PubMed ID: 17623037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa.
    Shinde V; Kotla P; Strang C; Gorbatyuk M
    Cell Death Dis; 2016 Feb; 7(2):e2085. PubMed ID: 26844699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunolocalization of TRPC channel subunits 1 and 4 in the chicken retina.
    Crousillac S; LeRouge M; Rankin M; Gleason E
    Vis Neurosci; 2003; 20(4):453-63. PubMed ID: 14658773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microglia Inhibition Delays Retinal Degeneration Due to MerTK Phagocytosis Receptor Deficiency.
    Lew DS; Mazzoni F; Finnemann SC
    Front Immunol; 2020; 11():1463. PubMed ID: 32765507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa.
    Fernández-Sánchez L; Lax P; Campello L; Pinilla I; Cuenca N
    Front Cell Neurosci; 2015; 9():484. PubMed ID: 26733810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Store-Operated Calcium Entry in Müller Glia Is Controlled by Synergistic Activation of TRPC and Orai Channels.
    Molnár T; Yarishkin O; Iuso A; Barabas P; Jones B; Marc RE; Phuong TT; Križaj D
    J Neurosci; 2016 Mar; 36(11):3184-98. PubMed ID: 26985029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa.
    Phillips MJ; Otteson DC; Sherry DM
    J Comp Neurol; 2010 Jun; 518(11):2071-89. PubMed ID: 20394059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal metabolic state of the proline-23-histidine rat model of retinitis pigmentosa.
    Acosta ML; Shin YS; Ready S; Fletcher EL; Christie DL; Kalloniatis M
    Am J Physiol Cell Physiol; 2010 Mar; 298(3):C764-74. PubMed ID: 20032515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mullerian glia in dystrophic rodent retinas: an immunocytochemical analysis.
    Sheedlo HJ; Jaynes D; Bolan AL; Turner JE
    Brain Res Dev Brain Res; 1995 Apr; 85(2):171-80. PubMed ID: 7600664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat.
    Yu DY; Cringle S; Valter K; Walsh N; Lee D; Stone J
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):2013-9. PubMed ID: 15161870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
    Jensen RJ
    Exp Eye Res; 2012 Jun; 99():71-7. PubMed ID: 22542904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model.
    Lee EJ; Chan P; Chea L; Kim K; Kaufman RJ; Lin JH
    Sci Rep; 2021 Aug; 11(1):16356. PubMed ID: 34381136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal degeneration and local oxygen metabolism.
    Yu DY; Cringle SJ
    Exp Eye Res; 2005 Jun; 80(6):745-51. PubMed ID: 15939030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological alterations in retinal neurons in the S334ter-line3 transgenic rat.
    Ray A; Sun GJ; Chan L; Grzywacz NM; Weiland J; Lee EJ
    Cell Tissue Res; 2010 Mar; 339(3):481-91. PubMed ID: 20127257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.