BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37722629)

  • 1. Piezo1:the potential new therapeutic target for fibrotic diseases.
    Liu X; Niu W; Zhao S; Zhang W; Zhao Y; Li J
    Prog Biophys Mol Biol; 2023 Nov; 184():42-49. PubMed ID: 37722629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling.
    Braidotti N; Chen SN; Long CS; Cojoc D; Sbaizero O
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical communication in fibrosis progression.
    Long Y; Niu Y; Liang K; Du Y
    Trends Cell Biol; 2022 Jan; 32(1):70-90. PubMed ID: 34810063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis.
    Rayego-Mateos S; Campillo S; Rodrigues-Diez RR; Tejera-Muñoz A; Marquez-Exposito L; Goldschmeding R; Rodríguez-Puyol D; Calleros L; Ruiz-Ortega M
    Clin Sci (Lond); 2021 Aug; 135(16):1999-2029. PubMed ID: 34427291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezo1 Channels Contribute to the Regulation of Human Atrial Fibroblast Mechanical Properties and Matrix Stiffness Sensing.
    Emig R; Knodt W; Krussig MJ; Zgierski-Johnston CM; Gorka O; Groß O; Kohl P; Ravens U; Peyronnet R
    Cells; 2021 Mar; 10(3):. PubMed ID: 33809739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical stiffness promotes skin fibrosis via Piezo1-Wnt2/Wnt11-CCL24 positive feedback loop.
    He J; Cheng X; Fang B; Shan S; Li Q
    Cell Death Dis; 2024 Jan; 15(1):84. PubMed ID: 38267432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular matrix stiffness-The central cue for skin fibrosis.
    Wang K; Wen D; Xu X; Zhao R; Jiang F; Yuan S; Zhang Y; Gao Y; Li Q
    Front Mol Biosci; 2023; 10():1132353. PubMed ID: 36968277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts.
    Cho N; Razipour SE; McCain ML
    Exp Biol Med (Maywood); 2018 Apr; 243(7):601-612. PubMed ID: 29504479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protonation of Piezo1 Impairs Cell-Matrix Interactions of Pancreatic Stellate Cells.
    Kuntze A; Goetsch O; Fels B; Najder K; Unger A; Wilhelmi M; Sargin S; Schimmelpfennig S; Neumann I; Schwab A; Pethő Z
    Front Physiol; 2020; 11():89. PubMed ID: 32116794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary Stretch and Lung Mechanotransduction: Implications for Progression in the Fibrotic Lung.
    Marchioni A; Tonelli R; Cerri S; Castaniere I; Andrisani D; Gozzi F; Bruzzi G; Manicardi L; Moretti A; Demurtas J; Baroncini S; Andreani A; Cappiello GF; Busani S; Fantini R; Tabbì L; Samarelli AV; Clini E
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Insights into the Important Role of Leptin in Modulating the Pathological Development of Fibrotic-related Diseases.
    Kang H; Lai M; Yao Y; Wang B; Su X; Cheng Y
    Curr Mol Med; 2023; 23(10):1066-1076. PubMed ID: 36411554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer.
    Walraven M; Hinz B
    Matrix Biol; 2018 Oct; 71-72():205-224. PubMed ID: 29499355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition.
    Nizamoglu M; de Hilster RHJ; Zhao F; Sharma PK; Borghuis T; Harmsen MC; Burgess JK
    Acta Biomater; 2022 Jul; 147():50-62. PubMed ID: 35605955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decellularized Extracellular Matrix (ECM) as a Model to Study Fibrotic ECM Mechanobiology.
    Yeh CR; Bingham GC; Shetty J; Hu P; Barker TH
    Methods Mol Biol; 2021; 2299():237-261. PubMed ID: 34028748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction in fibrosis: Mechanisms and treatment targets.
    Yeh CF; Chou C; Yang KC
    Curr Top Membr; 2021; 87():279-314. PubMed ID: 34696888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer.
    Cox TR; Erler JT
    Dis Model Mech; 2011 Mar; 4(2):165-78. PubMed ID: 21324931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Mechanosensitive Piezo1 Alleviated Renal Fibrosis Through p38MAPK-YAP Pathway.
    Fu Y; Wan P; Zhang J; Li X; Xing J; Zou Y; Wang K; Peng H; Zhu Q; Cao L; Zhai X
    Front Cell Dev Biol; 2021; 9():741060. PubMed ID: 34805150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma.
    Tschumperlin DJ; Lagares D
    Pharmacol Ther; 2020 Aug; 212():107575. PubMed ID: 32437826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syndecans in heart fibrosis.
    Lunde IG; Herum KM; Carlson CC; Christensen G
    Cell Tissue Res; 2016 Sep; 365(3):539-52. PubMed ID: 27411689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.