These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37722637)

  • 1. Bacterial cellulose/gum Arabic composite production by in-situ modification from lavender residue hydrolysate.
    Jia HP; Wang XL; Liu ZW; Wu Y; Gao J; Hu Y; Chen Y; Huang C
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):126961. PubMed ID: 37722637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of in-situ biochemical modification on the synthesis, structure, and function of xanthan gum based bacterial cellulose generated from Tieguanyin oolong tea residue hydrolysate.
    Wu Y; Liu YL; Jia HP; Chen KH; Wu FF; Gao J; Hu Y; Chen Y; Huang C
    Food Chem; 2024 Jan; 432():137133. PubMed ID: 37633139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ fermentation with gellan gum adding to produce bacterial cellulose from traditional Chinese medicinal herb residues hydrolysate.
    Wu Y; Huang TY; Li ZX; Huang ZY; Lu YQ; Gao J; Hu Y; Huang C
    Carbohydr Polym; 2021 Oct; 270():118350. PubMed ID: 34364598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07.
    Gao G; Cao Y; Zhang Y; Wu M; Ma T; Li G
    Carbohydr Polym; 2020 Nov; 248():116788. PubMed ID: 32919576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus.
    Yang XY; Huang C; Guo HJ; Xiong L; Li YY; Zhang HR; Chen XD
    J Appl Microbiol; 2013 Oct; 115(4):995-1002. PubMed ID: 23890373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Bacterial Cellulose/Inorganic Gel of Bentonite Composite by In Situ Modification.
    Wang B; Qi GX; Huang C; Yang XY; Zhang HR; Luo J; Chen XF; Xiong L; Chen XD
    Indian J Microbiol; 2016 Mar; 56(1):72-9. PubMed ID: 26843699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost and highly efficient production of bacterial cellulose from sweet potato residues: Optimization, characterization, and application.
    Xu S; Xu S; Ge X; Tan L; Liu T
    Int J Biol Macromol; 2022 Jan; 196():172-179. PubMed ID: 34914912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus.
    Huang C; Yang XY; Xiong L; Guo HJ; Luo J; Wang B; Zhang HR; Lin XQ; Chen XD
    Appl Biochem Biotechnol; 2015 Feb; 175(3):1678-88. PubMed ID: 25422061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biosynthesis of amidated bacterial cellulose derivatives via in-situ strategy.
    Lin J; Sun B; Zhang H; Yang X; Qu X; Zhang L; Chen C; Sun D
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124831. PubMed ID: 37245762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus.
    Huang C; Yang XY; Xiong L; Guo HJ; Luo J; Wang B; Zhang HR; Lin XQ; Chen XD
    Lett Appl Microbiol; 2015 May; 60(5):491-6. PubMed ID: 25615895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436
    Gorgieva S; Jančič U; Cepec E; Trček J
    Int J Biol Macromol; 2023 Jul; 244():125368. PubMed ID: 37330080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green and efficient in-situ biosynthesis of antioxidant and antibacterial bacterial cellulose using wine pomace.
    Li ZY; Azi F; Dong JJ; Liu LZ; Ge ZW; Dong MS
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2183-2191. PubMed ID: 34785197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm inspired fabrication of functional bacterial cellulose through ex-situ and in-situ approaches.
    Gilmour KA; Aljannat M; Markwell C; James P; Scott J; Jiang Y; Torun H; Dade-Robertson M; Zhang M
    Carbohydr Polym; 2023 Mar; 304():120482. PubMed ID: 36641190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ regulation of bacterial cellulose networks by starch from different sources or amylose/amylopectin content during fermentation.
    Wang FP; Li B; Sun MY; Wahid F; Zhang HM; Wang SJ; Xie YY; Jia SR; Zhong C
    Int J Biol Macromol; 2022 Jan; 195():59-66. PubMed ID: 34871660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering.
    Stumpf TR; Yang X; Zhang J; Cao X
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():372-383. PubMed ID: 29025671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production.
    Guo X; Cavka A; Jönsson LJ; Hong F
    Microb Cell Fact; 2013 Oct; 12():93. PubMed ID: 24119691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of microstructure and selected physicochemical properties of bacterial cellulose produced by bacterial isolate using hydrocolloid-fortified Hestrin-Schramm medium.
    Nguyen NN; Tran TTV; Nguyen QD; Nguyen TP; Lien TN
    Biotechnol Prog; 2023; 39(4):e3344. PubMed ID: 37025043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus.
    Luo MT; Huang C; Chen XF; Huang QL; Qi GX; Tian LL; Xiong L; Li HL; Chen XD
    Prep Biochem Biotechnol; 2017 Nov; 47(10):1025-1031. PubMed ID: 28857665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of bacterial cellulose composites with antimicrobial properties by in situ modification utilizing the specific function-suspension containing water-insoluble magnolol.
    Gao G; Niu S; Liu T; Zhang Y; Zhao X; Shi Z; Chen S; Wu M; Li G; Ma T
    Int J Biol Macromol; 2023 Jun; 239():124329. PubMed ID: 37019196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current progress on the production, modification, and applications of bacterial cellulose.
    Blanco Parte FG; Santoso SP; Chou CC; Verma V; Wang HT; Ismadji S; Cheng KC
    Crit Rev Biotechnol; 2020 May; 40(3):397-414. PubMed ID: 31937141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.