BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37723282)

  • 1. Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons.
    Camp CR; Vlachos A; Klöckner C; Krey I; Banke TG; Shariatzadeh N; Ruggiero SM; Galer P; Park KL; Caccavano A; Kimmel S; Yuan X; Yuan H; Helbig I; Benke TA; Lemke JR; Pelkey KA; McBain CJ; Traynelis SF
    Commun Biol; 2023 Sep; 6(1):952. PubMed ID: 37723282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opportunities for Precision Treatment of
    Han W; Yuan H; Allen JP; Kim S; Shaulsky GH; Perszyk RE; Traynelis SF; Myers SJ
    J Pharmacol Exp Ther; 2022 Apr; 381(1):54-66. PubMed ID: 35110392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-terminal alternative splicing of GluN1 regulates the maturation of excitatory synapses and seizure susceptibility.
    Liu H; Wang H; Peterson M; Zhang W; Hou G; Zhang ZW
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21207-21212. PubMed ID: 31570583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo GRIN2A variants associated with epilepsy and autism and literature review.
    Mangano GD; Riva A; Fontana A; Salpietro V; Mangano GR; Nobile G; Orsini A; Iacomino M; Battini R; Astrea G; Striano P; Nardello R
    Epilepsy Behav; 2022 Apr; 129():108604. PubMed ID: 35217385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GluN2D-Containing N-methyl-d-Aspartate Receptors Mediate Synaptic Transmission in Hippocampal Interneurons and Regulate Interneuron Activity.
    Perszyk RE; DiRaddo JO; Strong KL; Low CM; Ogden KK; Khatri A; Vargish GA; Pelkey KA; Tricoire L; Liotta DC; Smith Y; McBain CJ; Traynelis SF
    Mol Pharmacol; 2016 Dec; 90(6):689-702. PubMed ID: 27625038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets.
    Cardis R; Cabungcal JH; Dwir D; Do KQ; Steullet P
    Neurobiol Dis; 2018 Jan; 109(Pt A):64-75. PubMed ID: 29024713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Specific Regulation of N-Methyl-D-Aspartate Receptor Maturation by Mecp2 in Cortical Circuits.
    Mierau SB; Patrizi A; Hensch TK; Fagiolini M
    Biol Psychiatry; 2016 May; 79(9):746-754. PubMed ID: 26185009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of GABAergic Synaptic Transmission From Neocortical Parvalbumin Interneurons Involves N-methyl-D-aspartate Receptor Recruitment of Cav2.1 Channels.
    Singh M; Sapkota K; Sakimura K; Kano M; Cowell RM; Overstreet-Wadiche L; Hablitz JJ; Nakazawa K
    Neuroscience; 2023 Mar; 513():38-53. PubMed ID: 36682446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MK-801 impairs working memory on the Trial-Unique Nonmatch-to-Location test in mice, but this is not exclusively mediated by NMDA receptors on PV+ interneurons or forebrain pyramidal cells.
    Sokolenko E; Nithianantharajah J; Jones NC
    Neuropharmacology; 2020 Jul; 171():108103. PubMed ID: 32330470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex.
    Ferrer C; Hsieh H; Wollmuth LP
    J Neurophysiol; 2018 Dec; 120(6):3063-3076. PubMed ID: 30303753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders.
    Burket JA; Webb JD; Deutsch SI
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease-associated GRIN protein truncating variants trigger NMDA receptor loss-of-function.
    Santos-Gómez A; Miguez-Cabello F; García-Recio A; Locubiche-Serra S; García-Díaz R; Soto-Insuga V; Guerrero-López R; Juliá-Palacios N; Ciruela F; García-Cazorla À; Soto D; Olivella M; Altafaj X
    Hum Mol Genet; 2021 Feb; 29(24):3859-3871. PubMed ID: 33043365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and Functional Analysis of GRIN2A in Tumor Samples.
    Prickett TD; Gartner JJ; Samuels Y
    Methods Mol Biol; 2017; 1677():93-116. PubMed ID: 28986867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GRIN2A-related disorders: genotype and functional consequence predict phenotype.
    Strehlow V; Heyne HO; Vlaskamp DRM; Marwick KFM; Rudolf G; de Bellescize J; Biskup S; Brilstra EH; Brouwer OF; Callenbach PMC; Hentschel J; Hirsch E; Kind PC; Mignot C; Platzer K; Rump P; Skehel PA; Wyllie DJA; Hardingham GE; van Ravenswaaij-Arts CMA; Lesca G; Lemke JR;
    Brain; 2019 Jan; 142(1):80-92. PubMed ID: 30544257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient microstructural brain anomalies and epileptiform discharges in mice defective for epilepsy and language-related NMDA receptor subunit gene Grin2a.
    Salmi M; Bolbos R; Bauer S; Minlebaev M; Burnashev N; Szepetowski P
    Epilepsia; 2018 Oct; 59(10):1919-1930. PubMed ID: 30146685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GluN2D-containing NMDA receptors-mediate synaptic currents in hippocampal interneurons and pyramidal cells in juvenile mice.
    von Engelhardt J; Bocklisch C; Tönges L; Herb A; Mishina M; Monyer H
    Front Cell Neurosci; 2015; 9():95. PubMed ID: 25859181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene.
    Schmalbach B; Lepsveridze E; Djogo N; Papashvili G; Kuang F; Leshchyns'ka I; Sytnyk V; Nikonenko AG; Dityatev A; Jakovcevski I; Schachner M
    J Neurochem; 2015 Nov; 135(4):830-44. PubMed ID: 26285062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired vocal communication, sleep-related discharges, and transient alteration of slow-wave sleep in developing mice lacking the GluN2A subunit of N-methyl-d-aspartate receptors.
    Salmi M; Del Gallo F; Minlebaev M; Zakharov A; Pauly V; Perron P; Pons-Bennaceur A; Corby-Pellegrino S; Aniksztejn L; Lenck-Santini PP; Epsztein J; Khazipov R; Burnashev N; Bertini G; Szepetowski P
    Epilepsia; 2019 Jul; 60(7):1424-1437. PubMed ID: 31158310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional assessment of triheteromeric NMDA receptors containing a human variant associated with epilepsy.
    Marwick KFM; Hansen KB; Skehel PA; Hardingham GE; Wyllie DJA
    J Physiol; 2019 Mar; 597(6):1691-1704. PubMed ID: 30604514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia.
    Tarabeux J; Kebir O; Gauthier J; Hamdan FF; Xiong L; Piton A; Spiegelman D; Henrion É; Millet B; ; Fathalli F; Joober R; Rapoport JL; DeLisi LE; Fombonne É; Mottron L; Forget-Dubois N; Boivin M; Michaud JL; Drapeau P; Lafrenière RG; Rouleau GA; Krebs MO
    Transl Psychiatry; 2011 Nov; 1(11):e55. PubMed ID: 22833210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.