These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37723373)

  • 1. Long-form recording of infant body position in the home using wearable inertial sensors.
    Franchak JM; Tang M; Rousey H; Luo C
    Behav Res Methods; 2023 Sep; ():. PubMed ID: 37723373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Contactless Method for Measuring Full-Day, Naturalistic Motor Behavior Using Wearable Inertial Sensors.
    Franchak JM; Scott V; Luo C
    Front Psychol; 2021; 12():701343. PubMed ID: 34744865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changing Opportunities for Learning in Everyday Life: Infant Body Position Over the First Year.
    Franchak JM
    Infancy; 2019 Mar; 24(2):187-209. PubMed ID: 32677202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal relations between independent walking, body position, and object experiences in home life.
    Franchak JM; Kadooka K; Fausey CM
    Dev Psychol; 2024 Feb; 60(2):228-242. PubMed ID: 38190212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infant posture and caregiver-provided cognitive opportunities in typically developing infants and infants with motor delay.
    Kretch KS; Koziol NA; Marcinowski EC; Kane AE; Inamdar K; Brown ED; Bovaird JA; Harbourne RT; Hsu LY; Lobo MA; Dusing SC
    Dev Psychobiol; 2022 Jan; 64(1):e22233. PubMed ID: 35050510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    J Neuroeng Rehabil; 2020 Nov; 17(1):148. PubMed ID: 33148315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized wireless, skin-integrated sensor networks for quantifying full-body movement behaviors and vital signs in infants.
    Jeong H; Kwak SS; Sohn S; Lee JY; Lee YJ; O'Brien MK; Park Y; Avila R; Kim JT; Yoo JY; Irie M; Jang H; Ouyang W; Shawen N; Kang YJ; Kim SS; Tzavelis A; Lee K; Andersen RA; Huang Y; Jayaraman A; Davis MM; Shanley T; Wakschlag LS; Krogh-Jespersen S; Xu S; Ryan SW; Lieber RL; Rogers JA
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34663725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Clothing-Mounted Sensors with Wearable Sensors for Movement Analysis and Activity Classification.
    Jayasinghe U; Harwin WS; Hwang F
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of upper limb use in children with typical development and neurodevelopmental disorders by inertial sensors: a systematic review.
    Braito I; Maselli M; Sgandurra G; Inguaggiato E; Beani E; Cecchi F; Cioni G; Boyd R
    J Neuroeng Rehabil; 2018 Nov; 15(1):94. PubMed ID: 30400992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors.
    Airaksinen M; Räsänen O; Ilén E; Häyrinen T; Kivi A; Marchi V; Gallen A; Blom S; Varhe A; Kaartinen N; Haataja L; Vanhatalo S
    Sci Rep; 2020 Jan; 10(1):169. PubMed ID: 31932616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach.
    Mancini M; Shah VV; Stuart S; Curtze C; Horak FB; Safarpour D; Nutt JG
    J Neuroeng Rehabil; 2021 Jan; 18(1):1. PubMed ID: 33397401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic assessment of infant carrying and holding using at-home wearable recordings.
    Airaksinen M; Vaaras E; Haataja L; Räsänen O; Vanhatalo S
    Sci Rep; 2024 Feb; 14(1):4852. PubMed ID: 38418850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charting infants' motor development at home using a wearable system: validation and comparison to physical growth charts.
    Airaksinen M; Taylor E; Gallen A; Ilén E; Saari A; Sankilampi U; Räsänen O; Haataja LM; Vanhatalo S
    EBioMedicine; 2023 Jun; 92():104591. PubMed ID: 37137181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent wearable allows out-of-the-lab tracking of developing motor abilities in infants.
    Airaksinen M; Gallen A; Kivi A; Vijayakrishnan P; Häyrinen T; Ilén E; Räsänen O; Haataja LM; Vanhatalo S
    Commun Med (Lond); 2022; 2():69. PubMed ID: 35721830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Day by day, hour by hour: Naturalistic language input to infants.
    Bergelson E; Amatuni A; Dailey S; Koorathota S; Tor S
    Dev Sci; 2019 Jan; 22(1):e12715. PubMed ID: 30094888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-Enactment as a Method to Reproduce Real-World Fall Events Using Inertial Sensor Data: Development and Usability Study.
    Sczuka KS; Schwickert L; Becker C; Klenk J
    J Med Internet Res; 2020 Apr; 22(4):e13961. PubMed ID: 32242825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Home-Based Measurements of Dystonia in Cerebral Palsy Using Smartphone-Coupled Inertial Sensor Technology and Machine Learning: A Proof-of-Concept Study.
    den Hartog D; van der Krogt MM; van der Burg S; Aleo I; Gijsbers J; Bonouvrié LA; Harlaar J; Buizer AI; Haberfehlner H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.