These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37723401)

  • 1. Theoretical rejection of fifty-four antineoplastic drugs by different nanofiltration membranes.
    Gouveia TIA; Alves A; Santos MSF
    Environ Sci Pollut Res Int; 2023 Oct; 30(48):106099-106111. PubMed ID: 37723401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective recovery of salt from coal gasification brine by nanofiltration membranes.
    Li K; Ma W; Han H; Xu C; Han Y; Wang D; Ma W; Zhu H
    J Environ Manage; 2018 Oct; 223():306-313. PubMed ID: 29935445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters.
    Cheng S; Oatley DL; Williams PM; Wright CJ
    Water Res; 2012 Jan; 46(1):33-42. PubMed ID: 22078250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants.
    Garcia-Ivars J; Martella L; Massella M; Carbonell-Alcaina C; Alcaina-Miranda MI; Iborra-Clar MI
    Water Res; 2017 Nov; 125():360-373. PubMed ID: 28881212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan.
    Chang EE; Chang YC; Liang CH; Huang CP; Chiang PC
    J Hazard Mater; 2012 Jun; 221-222():19-27. PubMed ID: 22554383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2010 Jan; 44(2):373-84. PubMed ID: 19616272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antineoplastic drugs in urban wastewater: Occurrence, nanofiltration treatment and toxicity screening.
    Gouveia TIA; Cristóvão MB; Pereira VJ; Crespo JG; Alves A; Ribeiro AR; Silva A; Santos MSF
    Environ Pollut; 2023 Sep; 332():121944. PubMed ID: 37290632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentials of using nanofiltration to recover phosphorus from sewage sludge.
    Niewersch C; Koh CN; Wintgens T; Melin T; Schaum C; Cornel P
    Water Sci Technol; 2008; 57(5):707-14. PubMed ID: 18401142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus removal using nanofiltration membranes.
    Leo CP; Chai WK; Mohammad AW; Qi Y; Hoedley AF; Chai SP
    Water Sci Technol; 2011; 64(1):199-205. PubMed ID: 22053475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2009 May; 43(9):2349-62. PubMed ID: 19303127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium (VI) removal.
    Ren X; Zhao C; Du S; Wang T; Luan Z; Wang J; Hou D
    J Environ Sci (China); 2010; 22(9):1335-41. PubMed ID: 21174963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of RO/NF membranes at the removal of veterinary antibiotics.
    Dolar D; Vuković A; Ašperger D; Košutić K
    Water Sci Technol; 2012; 65(2):317-23. PubMed ID: 22233911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorization of artichoke wastewaters by integrated membrane process.
    Conidi C; Cassano A; Garcia-Castello E
    Water Res; 2014 Jan; 48():363-74. PubMed ID: 24125635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes.
    Kumar R; Pal P
    Water Environ Res; 2013 May; 85(5):447-55. PubMed ID: 23789574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of small trihalomethane precursors from aqueous solution by nanofiltration.
    Lin YL; Chiang PC; Chang EE
    J Hazard Mater; 2007 Jul; 146(1-2):20-9. PubMed ID: 17212977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates.
    Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals.
    Steinle-Darling E; Reinhard M
    Environ Sci Technol; 2008 Jul; 42(14):5292-7. PubMed ID: 18754383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pH and NaCl on the rejection of glycine and triglycine in binary solutions for desalination with diananofiltration.
    Labanda J; Shahgodari S; Llorens J
    Heliyon; 2023 Jun; 9(6):e16797. PubMed ID: 37313174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of micropollutants from water by commercially available nanofiltration membranes.
    Cuhorka J; Wallace E; Mikulášek P
    Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.