These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 37723572)

  • 1. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study.
    Song H; Yang S; Yu B; Li N; Huang Y; Sun R; Wang B; Nie P; Hou F; Huang C; Zhang M; Wang H
    Cancer Imaging; 2023 Sep; 23(1):89. PubMed ID: 37723572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a CT-based deep learning radiomics nomogram to predict muscle invasion in bladder cancer.
    Wei Z; Liu H; Xv Y; Liao F; He Q; Xie Y; Lv F; Jiang Q; Xiao M
    Heliyon; 2024 Jan; 10(2):e24878. PubMed ID: 38304824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer.
    Deng Z; Dong W; Xiong S; Jin D; Zhou H; Zhang L; Xie L; Deng Y; Xu R; Fan B
    Front Oncol; 2023; 13():1166245. PubMed ID: 37223680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study.
    Zhang J; Xia L; Tang J; Xia J; Liu Y; Zhang W; Liu J; Liang Z; Zhang X; Zhang L; Tang G
    Acad Radiol; 2024 May; 31(5):2011-2026. PubMed ID: 38016821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based radiomic nomogram to predict risk categorization of thymic epithelial tumors: A multicenter study.
    Zhou H; Bai HX; Jiao Z; Cui B; Wu J; Zheng H; Yang H; Liao W
    Eur J Radiol; 2023 Nov; 168():111136. PubMed ID: 37832194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study.
    Cui Y; Zhang J; Li Z; Wei K; Lei Y; Ren J; Wu L; Shi Z; Meng X; Yang X; Gao X
    EClinicalMedicine; 2022 Apr; 46():101348. PubMed ID: 35340629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a deep learning radiomics nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes.
    Chen X; Feng B; Xu K; Chen Y; Duan X; Jin Z; Li K; Li R; Long W; Liu X
    Eur Radiol; 2023 Oct; 33(10):6804-6816. PubMed ID: 37148352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study.
    Nie P; Yang G; Wang Y; Xu Y; Yan L; Zhang M; Zhao L; Wang N; Zhao X; Li X; Cheng N; Wang Y; Chen C; Wang N; Duan S; Wang X; Wang Z
    Eur Radiol; 2023 Dec; 33(12):8858-8868. PubMed ID: 37389608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma.
    Zheng YM; Che JY; Yuan MG; Wu ZJ; Pang J; Zhou RZ; Li XL; Dong C
    Acad Radiol; 2023 Aug; 30(8):1591-1599. PubMed ID: 36460582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning model to preoperatively predict T2/T3 staging of laryngeal and hypopharyngeal cancer based on the CT radiomic signature.
    Liu Q; Liu S; Mao Y; Kang X; Yu M; Chen G
    Eur Radiol; 2024 Aug; 34(8):5349-5359. PubMed ID: 38206403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of recurrence risk factors in patients with early-stage cervical cancers by nomogram based on MRI handcrafted radiomics features and deep learning features: a dual-center study.
    Zhang Y; Wu C; Du J; Xiao Z; Lv F; Liu Y
    Abdom Radiol (NY); 2024 Jan; 49(1):258-270. PubMed ID: 37987856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Radiomics Nomogram Based on Multiphase Computed Tomography for Predicting Axillary Lymph Node Metastasis in Breast Cancer.
    Zhang J; Yin W; Yang L; Yao X
    Mol Imaging Biol; 2024 Feb; 26(1):90-100. PubMed ID: 37563517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer.
    Jiang M; Li CL; Luo XM; Chuan ZR; Lv WZ; Li X; Cui XW; Dietrich CF
    Eur J Cancer; 2021 Apr; 147():95-105. PubMed ID: 33639324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study.
    Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M
    Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound-based deep learning radiomics nomogram for differentiating mass mastitis from invasive breast cancer.
    Wu L; Li S; Wu C; Wu S; Lin Y; Wei D
    BMC Med Imaging; 2024 Jul; 24(1):189. PubMed ID: 39060962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study.
    Wei Z; Xv Y; Liu H; Li Y; Yin S; Xie Y; Chen Y; Lv F; Jiang Q; Li F; Xiao M
    Int J Surg; 2024 May; 110(5):2922-2932. PubMed ID: 38349205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning radiomics-based prediction model of metachronous distant metastasis following curative resection for retroperitoneal leiomyosarcoma: a bicentric study.
    Tian Z; Cheng Y; Zhao S; Li R; Zhou J; Sun Q; Wang D
    Cancer Imaging; 2024 Apr; 24(1):52. PubMed ID: 38627828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomic nomogram based on MRI to predict grade of branching type intraductal papillary mucinous neoplasms of the pancreas: a multicenter study.
    Cui S; Tang T; Su Q; Wang Y; Shu Z; Yang W; Gong X
    Cancer Imaging; 2021 Mar; 21(1):26. PubMed ID: 33750453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting preoperative muscle invasion status for bladder cancer using computed tomography-based radiomics nomogram.
    Zhang R; Jia S; Zhai L; Wu F; Zhang S; Li F
    BMC Med Imaging; 2024 Apr; 24(1):98. PubMed ID: 38678222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating multiparametric MRI radiomics features and the Vesical Imaging-Reporting and Data System (VI-RADS) for bladder cancer grading.
    Zheng Z; Xu F; Gu Z; Yan Y; Xu T; Liu S; Yao X
    Abdom Radiol (NY); 2021 Sep; 46(9):4311-4323. PubMed ID: 33978825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.