These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37723669)
1. Geometric properties of the complete-graph Ising model in the loop representation. Li Z; Zhou Z; Fang S; Deng Y Phys Rev E; 2023 Aug; 108(2-1):024129. PubMed ID: 37723669 [TBL] [Abstract][Full Text] [Related]
2. Finite-size scaling of the high-dimensional Ising model in the loop representation. Xiao T; Li Z; Zhou Z; Fang S; Deng Y Phys Rev E; 2024 Mar; 109(3-1):034125. PubMed ID: 38632761 [TBL] [Abstract][Full Text] [Related]
3. Geometric scaling behaviors of the Fortuin-Kasteleyn Ising model in high dimensions. Fang S; Zhou Z; Deng Y Phys Rev E; 2023 Apr; 107(4-1):044103. PubMed ID: 37198783 [TBL] [Abstract][Full Text] [Related]
4. Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph. Fang S; Zhou Z; Deng Y Phys Rev E; 2021 Jan; 103(1-1):012102. PubMed ID: 33601530 [TBL] [Abstract][Full Text] [Related]
5. Loop-Cluster Coupling and Algorithm for Classical Statistical Models. Zhang L; Michel M; Elçi EM; Deng Y Phys Rev Lett; 2020 Nov; 125(20):200603. PubMed ID: 33258631 [TBL] [Abstract][Full Text] [Related]
6. Geometric properties of the Fortuin-Kasteleyn representation of the Ising model. Hou P; Fang S; Wang J; Hu H; Deng Y Phys Rev E; 2019 Apr; 99(4-1):042150. PubMed ID: 31108621 [TBL] [Abstract][Full Text] [Related]
7. Complete graph and Gaussian fixed-point asymptotics in the five-dimensional Fortuin-Kasteleyn Ising model with periodic boundaries. Fang S; Grimm J; Zhou Z; Deng Y Phys Rev E; 2020 Aug; 102(2-1):022125. PubMed ID: 32942373 [TBL] [Abstract][Full Text] [Related]
8. Percolation of Fortuin-Kasteleyn clusters for the random-bond Ising model. Fajen H; Hartmann AK; Young AP Phys Rev E; 2020 Jul; 102(1-1):012131. PubMed ID: 32795066 [TBL] [Abstract][Full Text] [Related]
9. Red-bond exponents of the critical and the tricritical Ising model in three dimensions. Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056132. PubMed ID: 15600717 [TBL] [Abstract][Full Text] [Related]
10. Critical Binder cumulant and universality: Fortuin-Kasteleyn clusters and order-parameter fluctuations. Malakis A; Fytas NG; Gülpinar G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042103. PubMed ID: 24827189 [TBL] [Abstract][Full Text] [Related]
11. Cluster percolation in the two-dimensional Ising spin glass. Münster L; Weigel M Phys Rev E; 2023 May; 107(5-1):054103. PubMed ID: 37329020 [TBL] [Abstract][Full Text] [Related]
12. Ising (conformal) fields and cluster area measures. Camia F; Newman CM Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5457-63. PubMed ID: 19264967 [TBL] [Abstract][Full Text] [Related]
13. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
14. Fortuin-Kasteleyn and damage-spreading transitions in random-bond Ising lattices. Lundow PH; Campbell IA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041121. PubMed ID: 23214543 [TBL] [Abstract][Full Text] [Related]
15. Lifted worm algorithm for the Ising model. Elçi EM; Grimm J; Ding L; Nasrawi A; Garoni TM; Deng Y Phys Rev E; 2018 Apr; 97(4-1):042126. PubMed ID: 29758763 [TBL] [Abstract][Full Text] [Related]
16. Ground-state morphologies in the random-field Ising model: scaling properties and non-Porod behavior. Shrivastav GP; Kumar M; Banerjee V; Puri S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032140. PubMed ID: 25314428 [TBL] [Abstract][Full Text] [Related]
17. Complete graph asymptotics for the Ising and random-cluster models on five-dimensional grids with a cyclic boundary. Lundow PH; Markström K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022112. PubMed ID: 25768463 [TBL] [Abstract][Full Text] [Related]
18. Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation. Wang JS; Kozan O; Swendsen RH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):057101. PubMed ID: 12513636 [TBL] [Abstract][Full Text] [Related]
19. Efficient simulation of the random-cluster model. Elçi EM; Weigel M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033303. PubMed ID: 24125381 [TBL] [Abstract][Full Text] [Related]
20. Critical interfaces in the random-bond Potts model. Jacobsen JL; Le Doussal P; Picco M; Santachiara R; Wiese KJ Phys Rev Lett; 2009 Feb; 102(7):070601. PubMed ID: 19257654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]