These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37723692)

  • 1. Dynamic state of low-Reynolds-number turbulent channel flow.
    Mamori H; Nabae Y; Fukuda S; Gotoda H
    Phys Rev E; 2023 Aug; 108(2-2):025105. PubMed ID: 37723692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear dynamics of a buoyancy-induced turbulent fire.
    Takagi K; Gotoda H; Tokuda IT; Miyano T
    Phys Rev E; 2017 Nov; 96(5-1):052223. PubMed ID: 29347727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal dynamics of turbulent coaxial jet analyzed by symbolic information-theory quantifiers and complex-network approach.
    Kobayashi W; Gotoda H; Kandani S; Ohmichi Y; Matsuyama S
    Chaos; 2019 Dec; 29(12):123110. PubMed ID: 31893639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum Entropy Method for Solving the Turbulent Channel Flow Problem.
    Lee TW
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streamwise-travelling viscous waves in channel flows.
    Ricco P; Hicks PD
    J Eng Math; 2018; 111(1):23-49. PubMed ID: 30996402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear instability of developing streamwise vortices with applications to boundary layer heat transfer intensification through an extended Reynolds analogy.
    Liu JT
    Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2699-716. PubMed ID: 18495623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers.
    Zhang W; Liu P; Guo H; Wang J
    Phys Rev E; 2017 Nov; 96(5-1):052215. PubMed ID: 29347703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of low Reynolds number turbulent pipe flow.
    Duggleby A; Ball KS; Schwaenen M
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):473-88. PubMed ID: 18990657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.
    Van Blitterswyk J; Rocha J
    J Acoust Soc Am; 2017 Feb; 141(2):1257. PubMed ID: 28253673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenomenology of wall-bounded Newtonian turbulence.
    L'vov VS; Pomyalov A; Procaccia I; Zilitinkevich SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016303. PubMed ID: 16486273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument.
    Anderson W; Chamecki M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013005. PubMed ID: 24580318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and application of wavelet-based optical flow velocimetry (wOFV) to wall-bounded turbulent flows.
    Nicolas A; Zentgraf F; Linne M; Dreizler A; Peterson B
    Exp Fluids; 2023; 64(3):50. PubMed ID: 36844890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravitational effect on the nonlinear dynamics of a buoyant turbulent flame.
    Ozaki Y; Kawano K; Gotoda H
    Chaos; 2022 Aug; 32(8):083147. PubMed ID: 36049922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition of Transient Channel Flow with High Reynolds Number Ratios.
    Mathur A; Seddighi M; He S
    Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reynolds number effect on the bistable dynamic of a blunt-base bluff body.
    Fan Y; Cadot O
    Phys Rev E; 2023 Feb; 107(2-2):025103. PubMed ID: 36932601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic flow approach to model the mean velocity profile of wall-bounded flows.
    Pinier B; Mémin E; Laizet S; Lewandowski R
    Phys Rev E; 2019 Jun; 99(6-1):063101. PubMed ID: 31330641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control.
    Carpenter PW; Kudar KL; Ali R; Sen PK; Davies C
    Philos Trans A Math Phys Eng Sci; 2007 Oct; 365(1859):2419-41. PubMed ID: 17519201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexity of localised coherent structures in a boundary-layer flow.
    Khapko T; Duguet Y; Kreilos T; Schlatter P; Eckhardt B; Henningson DS
    Eur Phys J E Soft Matter; 2014 Apr; 37(4):32. PubMed ID: 24771243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.
    Chekmarev SF
    Chaos; 2013 Mar; 23(1):013144. PubMed ID: 23556981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.