These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37723984)

  • 1. Microfluidic synthesis of nanomaterials for biomedical applications.
    Huang Y; Liu C; Feng Q; Sun J
    Nanoscale Horiz; 2023 Nov; 8(12):1610-1627. PubMed ID: 37723984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic nanomaterials: From synthesis to biomedical applications.
    Illath K; Kar S; Gupta P; Shinde A; Wankhar S; Tseng FG; Lim KT; Nagai M; Santra TS
    Biomaterials; 2022 Jan; 280():121247. PubMed ID: 34801251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery.
    Maeki M; Uno S; Niwa A; Okada Y; Tokeshi M
    J Control Release; 2022 Apr; 344():80-96. PubMed ID: 35183654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of nanoparticles via microfluidic devices and integrated applications.
    Yao F; Zhu P; Chen J; Li S; Sun B; Li Y; Zou M; Qi X; Liang P; Chen Q
    Mikrochim Acta; 2023 Jun; 190(7):256. PubMed ID: 37301779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Generation of Nanomaterials for Biomedical Applications.
    Zhao X; Bian F; Sun L; Cai L; Li L; Zhao Y
    Small; 2020 Mar; 16(9):e1901943. PubMed ID: 31259464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications.
    Lopes C; Cristóvão J; Silvério V; Lino PR; Fonte P
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1381-1395. PubMed ID: 36223174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active microfluidic reactor-assisted controlled synthesis of nanoparticles and related potential biomedical applications.
    Kamat V; Dey P; Bodas D; Kaushik A; Boymelgreen A; Bhansali S
    J Mater Chem B; 2023 Jun; 11(25):5650-5667. PubMed ID: 37221948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.
    Krishna KS; Li Y; Li S; Kumar CS
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1470-95. PubMed ID: 23726944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of nanomaterials by continuous-flow microfluidics: a review.
    Makgwane PR; Ray SS
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1338-63. PubMed ID: 24749429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing.
    El-Mayta R; Padilla MS; Billingsley MM; Han X; Mitchell MJ
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology.
    Shen J; Shafiq M; Ma M; Chen H
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32560284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic synthesis of optically responsive materials for nano- and biophotonics.
    Koryakina IG; Afonicheva PK; Arabuli KV; Evstrapov AA; Timin AS; Zyuzin MV
    Adv Colloid Interface Sci; 2021 Dec; 298():102548. PubMed ID: 34757247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications.
    Zhao Q; Cui H; Wang Y; Du X
    Small; 2020 Mar; 16(9):e1903798. PubMed ID: 31650698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions.
    Yaghmur A; Hamad I
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods.
    Agha A; Waheed W; Stiharu I; Nerguizian V; Destgeer G; Abu-Nada E; Alazzam A
    Discov Nano; 2023 Feb; 18(1):18. PubMed ID: 36800044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device.
    Maeki M; Okada Y; Uno S; Niwa A; Ishida A; Tani H; Tokeshi M
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.