These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37724193)

  • 1. Data mining and mathematical models in cancer prognosis and prediction.
    Yu C; Wang J
    Med Rev (2021); 2022 Jun; 2(3):285-307. PubMed ID: 37724193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning application in personalised lung cancer recurrence and survivability prediction.
    Yang Y; Xu L; Sun L; Zhang P; Farid SS
    Comput Struct Biotechnol J; 2022; 20():1811-1820. PubMed ID: 35521553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning applications in cancer prognosis and prediction.
    Kourou K; Exarchos TP; Exarchos KP; Karamouzis MV; Fotiadis DI
    Comput Struct Biotechnol J; 2015; 13():8-17. PubMed ID: 25750696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient classification and outcome prediction in IgA nephropathy.
    Diciolla M; Binetti G; Di Noia T; Pesce F; Schena FP; Vågane AM; Bjørneklett R; Suzuki H; Tomino Y; Naso D
    Comput Biol Med; 2015 Nov; 66():278-86. PubMed ID: 26453758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data.
    López-García G; Jerez JM; Franco L; Veredas FJ
    PLoS One; 2020; 15(3):e0230536. PubMed ID: 32214348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review.
    Jorayeva M; Akbulut A; Catal C; Mishra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set.
    Par OE; Akcapinar Sezer E; Sever H
    Stud Health Technol Inform; 2019 Jul; 262():344-347. PubMed ID: 31349338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms.
    Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS
    Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With Chondrosarcoma?
    Thio QCBS; Karhade AV; Ogink PT; Raskin KA; De Amorim Bernstein K; Lozano Calderon SA; Schwab JH
    Clin Orthop Relat Res; 2018 Oct; 476(10):2040-2048. PubMed ID: 30179954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential value and impact of data mining and machine learning in clinical diagnostics.
    Saberi-Karimian M; Khorasanchi Z; Ghazizadeh H; Tayefi M; Saffar S; Ferns GA; Ghayour-Mobarhan M
    Crit Rev Clin Lab Sci; 2021 Jun; 58(4):275-296. PubMed ID: 33739235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of different types of liver diseases using rule based classification model.
    Kumar Y; Sahoo G
    Technol Health Care; 2013; 21(5):417-32. PubMed ID: 23963359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning and deep learning methods that use omics data for metastasis prediction.
    Albaradei S; Thafar M; Alsaedi A; Van Neste C; Gojobori T; Essack M; Gao X
    Comput Struct Biotechnol J; 2021; 19():5008-5018. PubMed ID: 34589181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data.
    Ruan J; Deng Y; Perkins EJ; Zhang W
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
    Adamidi ES; Mitsis K; Nikita KS
    Comput Struct Biotechnol J; 2021; 19():2833-2850. PubMed ID: 34025952
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.