These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3772426)

  • 1. Competition regulates the efficacy of an identified synapse in crickets.
    Shepherd D; Murphey RK
    J Neurosci; 1986 Nov; 6(11):3152-60. PubMed ID: 3772426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity.
    Chiba A; Murphey RK
    J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition and the dynamics of axon arbor growth in the cricket.
    Murphey RK
    J Comp Neurol; 1986 Sep; 251(1):100-10. PubMed ID: 3760254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation.
    Davis GW; Murphey RK
    J Neurosci; 1993 Sep; 13(9):3827-38. PubMed ID: 8366348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target-dependent release of a presynaptic neuropeptide regulates the formation and maturation of specific synapses in Aplysia.
    Hu JY; Goldman J; Wu F; Schacher S
    J Neurosci; 2004 Nov; 24(44):9933-43. PubMed ID: 15525778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapse formation by sensory neurons after cross-species transplantation in crickets: the role of positional information.
    Kämper G; Murphey RK
    Dev Biol; 1987 Aug; 122(2):492-502. PubMed ID: 3036633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identified target motor neuron regulates neurite outgrowth and synapse formation of aplysia sensory neurons in vitro.
    Glanzman DL; Kandel ER; Schacher S
    Neuron; 1989 Oct; 3(4):441-50. PubMed ID: 2642005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and rearrangement of synapses in a growing insect.
    Kämper G
    Biol Chem Hoppe Seyler; 1994 Nov; 375(11):741-4. PubMed ID: 7695836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of synaptic depression rates in the cricket cercal sensory system.
    Hill AA; Jin P
    J Neurophysiol; 1998 Mar; 79(3):1277-85. PubMed ID: 9497409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity.
    Blagburn JM; Sosa MA; Blanco RE
    J Comp Neurol; 1996 Sep; 373(4):511-28. PubMed ID: 8889942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of synapses between identified sensory neurones and giant interneurones in the cockroach Periplaneta americana.
    Blagburn JM; Beadle DJ; Sattelle DB
    J Embryol Exp Morphol; 1985 Apr; 86():227-46. PubMed ID: 4031743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetanic stimulation and cyclic adenosine monophosphate regulate segregation of presynaptic inputs on a common postsynaptic target neuron in vitro.
    Sun ZY; Schacher S
    J Neurobiol; 1996 Feb; 29(2):183-201. PubMed ID: 8821176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure of synaptic contacts between identified neurons of the auditory pathway in Gryllus bimaculatus DeGeer.
    Hirtz R; Wiese K
    J Comp Neurol; 1997 Sep; 386(3):347-57. PubMed ID: 9303422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-dependent morphological segregation of Aplysia sensory outgrowth in vitro.
    Glanzman DL; Kandel ER; Schacher S
    Neuron; 1991 Dec; 7(6):903-13. PubMed ID: 1764244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axoaxonic synapses on terminals of group II muscle spindle afferent axons in the spinal cord of the cat.
    Maxwell DJ; Riddell JS
    Eur J Neurosci; 1999 Jun; 11(6):2151-9. PubMed ID: 10336683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic reorganization induced by selective photoablation of an identified neuron.
    Mizrahi A; Libersat F
    J Neurosci; 2001 Dec; 21(23):9280-90. PubMed ID: 11717362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets.
    Brodfuehrer PD; Hoy RR
    J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic modulation of sensory afferents in the invertebrate and vertebrate nervous system.
    Watson AH
    Comp Biochem Physiol Comp Physiol; 1992 Oct; 103(2):227-39. PubMed ID: 1359948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture.
    Glanzman DL
    J Neurobiol; 1994 Jun; 25(6):666-93. PubMed ID: 8071666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.